These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33893237)

  • 1. Evolutionary and functional analysis of an NRPS condensation domain integrates β-lactam, ᴅ-amino acid, and dehydroamino acid synthesis.
    Wheadon MJ; Townsend CA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(17):. PubMed ID: 33893237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Lactam formation by a non-ribosomal peptide synthetase during antibiotic biosynthesis.
    Gaudelli NM; Long DH; Townsend CA
    Nature; 2015 Apr; 520(7547):383-7. PubMed ID: 25624104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis.
    Gaudelli NM; Townsend CA
    Nat Chem Biol; 2014 Apr; 10(4):251-8. PubMed ID: 24531841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of Integrated β-Lactam Formation by a Nonribosomal Peptide Synthetase during Antibiotic Synthesis.
    Long DH; Townsend CA
    Biochemistry; 2018 Jun; 57(24):3353-3358. PubMed ID: 29701951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Substrate-Like Probes for Trapping Late-Stage Intermediates in Nonribosomal Peptide Synthetase Condensation Domains.
    Wheadon MJ; Townsend CA
    ACS Chem Biol; 2022 Aug; 17(8):2046-2053. PubMed ID: 35914245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster.
    Li R; Oliver RA; Townsend CA
    Cell Chem Biol; 2017 Jan; 24(1):24-34. PubMed ID: 28017601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic analysis of condensation domains in NRPS sheds light on their functional evolution.
    Rausch C; Hoof I; Weber T; Wohlleben W; Huson DH
    BMC Evol Biol; 2007 May; 7():78. PubMed ID: 17506888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acyl Donor Stringency and Dehydroaminoacyl Intermediates in β-Lactam Formation by a Non-ribosomal Peptide Synthetase.
    Long DH; Townsend CA
    ACS Chem Biol; 2021 May; 16(5):806-812. PubMed ID: 33847484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a bound peptide phosphonate reveals the mechanism of nocardicin bifunctional thioesterase epimerase-hydrolase half-reactions.
    Patel KD; d'Andrea FB; Gaudelli NM; Buller AR; Townsend CA; Gulick AM
    Nat Commun; 2019 Aug; 10(1):3868. PubMed ID: 31455765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Lactone formation during product release from a nonribosomal peptide synthetase.
    Schaffer JE; Reck MR; Prasad NK; Wencewicz TA
    Nat Chem Biol; 2017 Jul; 13(7):737-744. PubMed ID: 28504677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo characterization of nonribosomal peptide synthetases NocA and NocB in the biosynthesis of nocardicin A.
    Davidsen JM; Townsend CA
    Chem Biol; 2012 Feb; 19(2):297-306. PubMed ID: 22365611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Molecular Basis of Substrate and Product Selectivities of Nocardicin Bifunctional Thioesterase.
    Yu Q; Xie L; Li Y; Bai L; Zhao YL; Wei D; Shi T
    Interdiscip Sci; 2022 Mar; 14(1):233-244. PubMed ID: 34699036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140. Discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load D-alanine.
    Tang GL; Cheng YQ; Shen B
    J Biol Chem; 2007 Jul; 282(28):20273-82. PubMed ID: 17502372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases.
    Kohli RM; Trauger JW; Schwarzer D; Marahiel MA; Walsh CT
    Biochemistry; 2001 Jun; 40(24):7099-108. PubMed ID: 11401555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity.
    Bloudoff K; Schmeing TM
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1587-1604. PubMed ID: 28526268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-aminoadipyl-cysteinyl-valine synthetases in beta-lactam producing organisms. From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis.
    Martin JF
    J Antibiot (Tokyo); 2000 Oct; 53(10):1008-21. PubMed ID: 11132945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI.
    Davidsen JM; Bartley DM; Townsend CA
    J Am Chem Soc; 2013 Feb; 135(5):1749-59. PubMed ID: 23330869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis.
    Roche ED; Walsh CT
    Biochemistry; 2003 Feb; 42(5):1334-44. PubMed ID: 12564937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain.
    Patel KD; Oliver RA; Lichstrahl MS; Li R; Townsend CA; Gulick AM
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the early stages of peptide formation during the biosynthesis of teicoplanin and related glycopeptide antibiotics.
    Kaniusaite M; Tailhades J; Kittilä T; Fage CD; Goode RJA; Schittenhelm RB; Cryle MJ
    FEBS J; 2021 Jan; 288(2):507-529. PubMed ID: 32359003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.