These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33893284)

  • 1. Arbitrary linear transformations for photons in the frequency synthetic dimension.
    Buddhiraju S; Dutt A; Minkov M; Williamson IAD; Fan S
    Nat Commun; 2021 Apr; 12(1):2401. PubMed ID: 33893284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universal Time-Dependent Control Scheme for Realizing Arbitrary Linear Bosonic Transformations.
    Xiang ZL; Olivares DG; García-Ripoll JJ; Rabl P
    Phys Rev Lett; 2023 Feb; 130(5):050801. PubMed ID: 36800447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ramsey Interference with Single Photons.
    Clemmen S; Farsi A; Ramelow S; Gaeta AL
    Phys Rev Lett; 2016 Nov; 117(22):223601. PubMed ID: 27925713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating boundaries along a synthetic frequency dimension.
    Dutt A; Yuan L; Yang KY; Wang K; Buddhiraju S; Vučković J; Fan S
    Nat Commun; 2022 Jun; 13(1):3377. PubMed ID: 35697716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Non-Abelian Lattice Gauge Fields for Photons in the Synthetic Frequency Dimension.
    Cheng D; Wang K; Fan S
    Phys Rev Lett; 2023 Feb; 130(8):083601. PubMed ID: 36898123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum interference of identical photons from remote GaAs quantum dots.
    Zhai L; Nguyen GN; Spinnler C; Ritzmann J; Löbl MC; Wieck AD; Ludwig A; Javadi A; Warburton RJ
    Nat Nanotechnol; 2022 Aug; 17(8):829-833. PubMed ID: 35589820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic phonons enable nonreciprocal coupling to arbitrary resonator networks.
    Peterson CW; Kim S; Bernhard JT; Bahl G
    Sci Adv; 2018 Jun; 4(6):eaat0232. PubMed ID: 29888328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic chip based tunable and reconfigurable narrowband microwave photonic filter using stimulated Brillouin scattering.
    Byrnes A; Pant R; Li E; Choi DY; Poulton CG; Fan S; Madden S; Luther-Davies B; Eggleton BJ
    Opt Express; 2012 Aug; 20(17):18836-45. PubMed ID: 23038523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
    Albrecht B; Farrera P; Fernandez-Gonzalvo X; Cristiani M; de Riedmatten H
    Nat Commun; 2014 Feb; 5():3376. PubMed ID: 24572696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic Anomalous Quantum Hall Effect.
    Mittal S; Orre VV; Leykam D; Chong YD; Hafezi M
    Phys Rev Lett; 2019 Jul; 123(4):043201. PubMed ID: 31491276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.
    Zhuang L; Beeker W; Leinse A; Heideman R; van Dijk P; Roeloffzen C
    Opt Express; 2013 Feb; 21(3):3114-24. PubMed ID: 23481769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip generation and dynamic piezo-optomechanical rotation of single photons.
    Bühler DD; Weiß M; Crespo-Poveda A; Nysten EDS; Finley JJ; Müller K; Santos PV; de Lima MM; Krenner HJ
    Nat Commun; 2022 Nov; 13(1):6998. PubMed ID: 36384915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tantalum pentoxide nanophotonic circuits for integrated quantum technology.
    Splitthoff L; Wolff MA; Grottke T; Schuck C
    Opt Express; 2020 Apr; 28(8):11921-11932. PubMed ID: 32403693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science.
    Ashby J; Thiel V; Allgaier M; d'Ornellas P; Davis AOC; Smith BJ
    Opt Express; 2020 Dec; 28(25):38376-38389. PubMed ID: 33379651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical mode conversion in coupled Fabry-Perot resonators.
    Stone M; Suleymanzade A; Taneja L; Schuster DI; Simon J
    Opt Lett; 2021 Jan; 46(1):21-24. PubMed ID: 33362003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonreciprocal Frequency Domain Beam Splitter.
    Otterstrom NT; Gertler S; Kittlaus EA; Gehl M; Starbuck AL; Dallo CM; Pomerene AT; Trotter DC; Rakich PT; Davids PS; Lentine AL
    Phys Rev Lett; 2021 Dec; 127(25):253603. PubMed ID: 35029420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable dispersion on a photonic integrated circuit for classical and quantum applications.
    Notaros J; Mower J; Heuck M; Lupo C; Harris NC; Steinbrecher GR; Bunandar D; Baehr-Jones T; Hochberg M; Lloyd S; Englund D
    Opt Express; 2017 Sep; 25(18):21275-21285. PubMed ID: 29041427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agile frequency transformations for dense wavelength-multiplexed communications.
    Lu HH; Qi B; Williams BP; Lougovski P; Weiner AM; Lukens JM
    Opt Express; 2020 Jul; 28(14):20379-20390. PubMed ID: 32680099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Configurable unitary transformations and linear logic gates using quantum memories.
    Campbell GT; Pinel O; Hosseini M; Ralph TC; Buchler BC; Lam PK
    Phys Rev Lett; 2014 Aug; 113(6):063601. PubMed ID: 25148326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steering non-Hermitian skin modes by synthetic gauge fields in optical ring resonators.
    Lin Z; Ding L; Ke S; Li X
    Opt Lett; 2021 Aug; 46(15):3512-3515. PubMed ID: 34329212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.