BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33893299)

  • 1. Protein design and variant prediction using autoregressive generative models.
    Shin JE; Riesselman AJ; Kollasch AW; McMahon C; Simon E; Sander C; Manglik A; Kruse AC; Marks DS
    Nat Commun; 2021 Apr; 12(1):2403. PubMed ID: 33893299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can computationally designed protein sequences improve secondary structure prediction?
    Bondugula R; Wallqvist A; Lee MS
    Protein Eng Des Sel; 2011 May; 24(5):455-61. PubMed ID: 21282334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simplified synthetic antibody libraries.
    Rajan S; Sidhu SS
    Methods Enzymol; 2012; 502():3-23. PubMed ID: 22208979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Framework of Computational Protein Design.
    Samish I
    Methods Mol Biol; 2017; 1529():3-19. PubMed ID: 27914044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing missense variant pathogenicity prediction with protein language models using VariPred.
    Lin W; Wells J; Wang Z; Orengo C; Martin ACR
    Sci Rep; 2024 Apr; 14(1):8136. PubMed ID: 38584172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design.
    Adolf-Bryfogle J; Kalyuzhniy O; Kubitz M; Weitzner BD; Hu X; Adachi Y; Schief WR; Dunbrack RL
    PLoS Comput Biol; 2018 Apr; 14(4):e1006112. PubMed ID: 29702641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface.
    Lowegard AU; Frenkel MS; Holt GT; Jou JD; Ojewole AA; Donald BR
    PLoS Comput Biol; 2020 Jun; 16(6):e1007447. PubMed ID: 32511232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative models for protein sequence modeling: recent advances and future directions.
    Mardikoraem M; Wang Z; Pascual N; Woldring D
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37864295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Tools for Aiding Rational Antibody Design.
    Krawczyk K; Dunbar J; Deane CM
    Methods Mol Biol; 2017; 1529():399-416. PubMed ID: 27914064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProteInfer, deep neural networks for protein functional inference.
    Sanderson T; Bileschi ML; Belanger D; Colwell LJ
    Elife; 2023 Feb; 12():. PubMed ID: 36847334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligning, analyzing, and visualizing sequences for antibody engineering: Automated recognition of immunoglobulin variable region features.
    Jarasch A; Skerra A
    Proteins; 2017 Jan; 85(1):65-71. PubMed ID: 27770557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.
    Várnai C; Burkoff NS; Wild DL
    PLoS One; 2017; 12(2):e0169356. PubMed ID: 28166227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences.
    Oldfield CJ; Chen K; Kurgan L
    Methods Mol Biol; 2019; 1958():73-100. PubMed ID: 30945214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and Flexible Protein Design Using Deep Graph Neural Networks.
    Strokach A; Becerra D; Corbi-Verge C; Perez-Riba A; Kim PM
    Cell Syst; 2020 Oct; 11(4):402-411.e4. PubMed ID: 32971019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A germline knowledge based computational approach for determining antibody complementarity determining regions.
    Zhao S; Lu J
    Mol Immunol; 2010 Jan; 47(4):694-700. PubMed ID: 19939452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.