These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33893342)

  • 1. Geometry of turbulent dissipation and the Navier-Stokes regularity problem.
    Rafner J; Grujić Z; Bach C; Bærentzen JA; Gervang B; Jia R; Leinweber S; Misztal M; Sherson J
    Sci Rep; 2021 Apr; 11(1):8824. PubMed ID: 33893342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.
    Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056306. PubMed ID: 17677163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In what sense is turbulence an unsolved problem?
    Nelkin M
    Science; 1992 Jan; 255(5044):566-70. PubMed ID: 17792378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universality of k(-1) noise, the enstrophy cascade, and the large-scale atmospheric spectrum.
    Beronov KN
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):525-31. PubMed ID: 11088488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow.
    Saw EW; Kuzzay D; Faranda D; Guittonneau A; Daviaud F; Wiertel-Gasquet C; Padilla V; Dubrulle B
    Nat Commun; 2016 Aug; 7():12466. PubMed ID: 27578459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-similarity in incompressible Navier-Stokes equations.
    Ercan A; Kavvas ML
    Chaos; 2015 Dec; 25(12):123126. PubMed ID: 26723165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes alpha model and their large-eddy-simulation potential.
    Pietarila Graham J; Holm DD; Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056310. PubMed ID: 18233759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.
    Ida M; Taniguchi N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036705. PubMed ID: 14524924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Model of Interacting Navier-Stokes Singularities.
    Faller H; Fery L; Geneste D; Dubrulle B
    Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissipation, intermittency, and singularities in incompressible turbulent flows.
    Debue P; Shukla V; Kuzzay D; Faranda D; Saw EW; Daviaud F; Dubrulle B
    Phys Rev E; 2018 May; 97(5-1):053101. PubMed ID: 29906866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.