These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33893345)
1. A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks. Syed S; Morseth B; Hopstock LA; Horsch A Sci Rep; 2021 Apr; 11(1):8832. PubMed ID: 33893345 [TBL] [Abstract][Full Text] [Related]
2. Detecting accelerometer non-wear periods using change in acceleration combined with rate-of-change in temperature. Vert A; Weber KS; Thai V; Turner E; Beyer KB; Cornish BF; Godkin FE; Wong C; McIlroy WE; Van Ooteghem K BMC Med Res Methodol; 2022 May; 22(1):147. PubMed ID: 35596151 [TBL] [Abstract][Full Text] [Related]
3. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X. Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148 [TBL] [Abstract][Full Text] [Related]
4. Development of a multi-wear-site, deep learning-based physical activity intensity classification algorithm using raw acceleration data. Ng JYY; Zhang JH; Hui SS; Jiang G; Yau F; Cheng J; Ha AS PLoS One; 2024; 19(3):e0299295. PubMed ID: 38452147 [TBL] [Abstract][Full Text] [Related]
5. Generalizability and performance of methods to detect non-wear with free-living accelerometer recordings. Skovgaard EL; Roswall MA; Pedersen NH; Larsen KT; Grøntved A; Brønd JC Sci Rep; 2023 Feb; 13(1):2496. PubMed ID: 36782015 [TBL] [Abstract][Full Text] [Related]
6. Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey. Thapa-Chhetry B; Arguello DJ; John D; Intille S Med Sci Sports Exerc; 2022 Nov; 54(11):1936-1946. PubMed ID: 36007161 [TBL] [Abstract][Full Text] [Related]
7. Accelerometer wear-site detection: When one site does not suit all, all of the time. Rowlands AV; Olds TS; Bakrania K; Stanley RM; Parfitt G; Eston RG; Yates T; Fraysse F J Sci Med Sport; 2017 Apr; 20(4):368-372. PubMed ID: 28117147 [TBL] [Abstract][Full Text] [Related]
8. Validation of accelerometer wear and nonwear time classification algorithm. Choi L; Liu Z; Matthews CE; Buchowski MS Med Sci Sports Exerc; 2011 Feb; 43(2):357-64. PubMed ID: 20581716 [TBL] [Abstract][Full Text] [Related]
9. Development and application of an automated algorithm to identify a window of consecutive days of accelerometer wear for large-scale studies. Rillamas-Sun E; Buchner DM; Di C; Evenson KR; LaCroix AZ BMC Res Notes; 2015 Jun; 8():270. PubMed ID: 26113170 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the performance of raw and epoch non-wear algorithms using multiple accelerometers and electrocardiogram recordings. Syed S; Morseth B; Hopstock LA; Horsch A Sci Rep; 2020 Apr; 10(1):5866. PubMed ID: 32246080 [TBL] [Abstract][Full Text] [Related]
11. Non-wear or sleep? Evaluation of five non-wear detection algorithms for raw accelerometer data. Ahmadi MN; Nathan N; Sutherland R; Wolfenden L; Trost SG J Sports Sci; 2020 Feb; 38(4):399-404. PubMed ID: 31826746 [TBL] [Abstract][Full Text] [Related]
12. A novel accelerometry-based algorithm for the detection of step durations over short episodes of gait in healthy elderly. Micó-Amigo ME; Kingma I; Ainsworth E; Walgaard S; Niessen M; van Lummel RC; van Dieën JH J Neuroeng Rehabil; 2016 Apr; 13():38. PubMed ID: 27093956 [TBL] [Abstract][Full Text] [Related]
13. Stress detection using deep neural networks. Li R; Liu Z BMC Med Inform Decis Mak; 2020 Dec; 20(Suppl 11):285. PubMed ID: 33380334 [TBL] [Abstract][Full Text] [Related]
14. Validity of an automated algorithm to identify waking and in-bed wear time in hip-worn accelerometer data collected with a 24 h wear protocol in young adults. McVeigh JA; Winkler EA; Healy GN; Slater J; Eastwood PR; Straker LM Physiol Meas; 2016 Oct; 37(10):1636-1652. PubMed ID: 27652717 [TBL] [Abstract][Full Text] [Related]
15. Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss. Romdhane TF; Alhichri H; Ouni R; Atri M Comput Biol Med; 2020 Aug; 123():103866. PubMed ID: 32658786 [TBL] [Abstract][Full Text] [Related]
16. Detection of Algorithmically Generated Domain Names Using the Recurrent Convolutional Neural Network with Spatial Pyramid Pooling. Liu Z; Zhang Y; Chen Y; Fan X; Dong C Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286827 [TBL] [Abstract][Full Text] [Related]
17. Potential corner case cautions regarding publicly available implementations of the National Cancer Institute's nonwear/wear classification algorithm for accelerometer data. Moore HE; Haydel KF; Banda JA; Fiterau M; Desai M; Robinson TN PLoS One; 2018; 13(12):e0210006. PubMed ID: 30596771 [TBL] [Abstract][Full Text] [Related]
18. Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process. Wu X; Liu Y; Zhou X; Mou A Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487810 [TBL] [Abstract][Full Text] [Related]
19. Is it on? An algorithm for discerning wrist-accelerometer non-wear times from sleep/wake activity. Kosmadopoulos A; Darwent D; Roach GD Chronobiol Int; 2016; 33(6):599-603. PubMed ID: 27096291 [TBL] [Abstract][Full Text] [Related]
20. High Precision Classification of Resting and Eating Behaviors of Cattle by Using a Collar-Fitted Triaxial Accelerometer Sensor. Nogoy KMC; Chon SI; Park JH; Sivamani S; Lee DH; Choi SH Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]