These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33893353)

  • 1. VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data.
    Highsmith M; Cheng J
    Sci Rep; 2021 Apr; 11(1):8880. PubMed ID: 33893353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic evaluation of Hi-C data enhancement methods for enhancing PLAC-seq and HiChIP data.
    Huang L; Yang Y; Li G; Jiang M; Wen J; Abnousi A; Rosen JD; Hu M; Li Y
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35488276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Four-Dimensional Chromosome Structure Prediction.
    Highsmith M; Cheng J
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    Biophys J; 2023 Sep; 122(17):3425-3438. PubMed ID: 37496267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepHiC: A generative adversarial network for enhancing Hi-C data resolution.
    Hong H; Jiang S; Li H; Du G; Sun Y; Tao H; Quan C; Zhao C; Li R; Li W; Yin X; Huang Y; Li C; Chen H; Bo X
    PLoS Comput Biol; 2020 Feb; 16(2):e1007287. PubMed ID: 32084131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiCHap: a package to correct and analyze the diploid Hi-C data.
    Luo H; Li X; Fu H; Peng C
    BMC Genomics; 2020 Oct; 21(1):746. PubMed ID: 33109075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ReHiC: Enhancing Hi-C data resolution via residual convolutional network.
    Cheng Z; Liu L; Lin G; Yi C; Chu X; Liang Y; Zhou W; Jin X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150001. PubMed ID: 33685371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving comparative analyses of Hi-C data via contrastive self-supervised learning.
    Li H; He X; Kurowski L; Zhang R; Zhao D; Zeng J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37287135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data.
    Liu T; Wang Z
    Bioinformatics; 2019 Nov; 35(21):4222-4228. PubMed ID: 31056636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hi-Corrector: a fast, scalable and memory-efficient package for normalizing large-scale Hi-C data.
    Li W; Gong K; Li Q; Alber F; Zhou XJ
    Bioinformatics; 2015 Mar; 31(6):960-2. PubMed ID: 25391400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    bioRxiv; 2023 Jul; ():. PubMed ID: 36993500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2.
    Kaul A; Bhattacharyya S; Ay F
    Nat Protoc; 2020 Mar; 15(3):991-1012. PubMed ID: 31980751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selfish: discovery of differential chromatin interactions via a self-similarity measure.
    Ardakany AR; Ay F; Lonardi S
    Bioinformatics; 2019 Jul; 35(14):i145-i153. PubMed ID: 31510653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.