These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33893353)

  • 21. FastHiC: a fast and accurate algorithm to detect long-range chromosomal interactions from Hi-C data.
    Xu Z; Zhang G; Wu C; Li Y; Hu M
    Bioinformatics; 2016 Sep; 32(17):2692-5. PubMed ID: 27153668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
    Wang S; Zhang Q; He Y; Cui Z; Guo Z; Han K; Huang DS
    PLoS Comput Biol; 2022 Oct; 18(10):e1010572. PubMed ID: 36206320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A deep learning method for replicate-based analysis of chromosome conformation contacts using Siamese neural networks.
    Al-Jibury E; King JWD; Guo Y; Lenhard B; Fisher AG; Merkenschlager M; Rueckert D
    Nat Commun; 2023 Aug; 14(1):5007. PubMed ID: 37591842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks.
    Liu T; Wang Z
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing stationary distributions derived from chromatin contact maps.
    Segal MR; Fletez-Brant K
    BMC Bioinformatics; 2020 Feb; 21(1):73. PubMed ID: 32093610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals.
    Yang R; Das A; Gao VR; Karbalayghareh A; Noble WS; Bilmes JA; Leslie CS
    Genome Biol; 2023 Jun; 24(1):134. PubMed ID: 37280678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Puzzle Hi-C: An accurate scaffolding software.
    Lin G; Huang Z; Yue T; Chai J; Li Y; Yang H; Qin W; Yang G; Murphy RW; Zhang YP; Zhang Z; Zhou W; Luo J
    PLoS One; 2024; 19(7):e0298564. PubMed ID: 39008464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypothesis-driven probabilistic modelling enables a principled perspective of genomic compartments.
    Kariti H; Feld T; Kaplan N
    Nucleic Acids Res; 2023 Feb; 51(3):1103-1119. PubMed ID: 36629266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolving Spatial Clusters of Genomic Regions From High-Throughput Chromatin Conformation Capture Data.
    Li X; Ma S; Wong KC
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):400-407. PubMed ID: 28708563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review and performance evaluation of clustering frameworks for single-cell Hi-C data.
    Zhen C; Wang Y; Geng J; Han L; Li J; Peng J; Wang T; Hao J; Shang X; Wei Z; Zhu P; Peng J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SRHiC: A Deep Learning Model to Enhance the Resolution of Hi-C Data.
    Li Z; Dai Z
    Front Genet; 2020; 11():353. PubMed ID: 32322265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast and adaptive detection framework for genome-wide chromatin loop mapping from Hi-C data.
    Chen S; Wang J; Jung I; Qiu Z; Gao X; Li Y
    Genome Res; 2024 Aug; ():. PubMed ID: 39137961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GSDB: a database of 3D chromosome and genome structures reconstructed from Hi-C data.
    Oluwadare O; Highsmith M; Turner D; Lieberman Aiden E; Cheng J
    BMC Mol Cell Biol; 2020 Aug; 21(1):60. PubMed ID: 32758136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generating High-Resolution Hi-C Contact Maps of Bacteria.
    Thierry A; Cockram C
    Methods Mol Biol; 2022; 2301():183-195. PubMed ID: 34415536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.