These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33893353)

  • 41. HiCDiff: single-cell Hi-C data denoising with diffusion models.
    Wang Y; Cheng J
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856167
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DeepLoop robustly maps chromatin interactions from sparse allele-resolved or single-cell Hi-C data at kilobase resolution.
    Zhang S; Plummer D; Lu L; Cui J; Xu W; Wang M; Liu X; Prabhakar N; Shrinet J; Srinivasan D; Fraser P; Li Y; Li J; Jin F
    Nat Genet; 2022 Jul; 54(7):1013-1025. PubMed ID: 35817982
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
    Oliveira Junior AB; Contessoto VG; Mello MF; Onuchic JN
    J Mol Biol; 2021 Mar; 433(6):166700. PubMed ID: 33160979
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
    Stansfield JC; Cresswell KG; Dozmorov MG
    Bioinformatics; 2019 Sep; 35(17):2916-2923. PubMed ID: 30668639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GITAR: An Open Source Tool for Analysis and Visualization of Hi-C Data.
    Calandrelli R; Wu Q; Guan J; Zhong S
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):365-372. PubMed ID: 30553884
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. iEnhance: a multi-scale spatial projection encoding network for enhancing chromatin interaction data resolution.
    Li K; Zhang P; Wang Z; Shen W; Sun W; Xu J; Wen Z; Li L
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37381618
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ASHIC: hierarchical Bayesian modeling of diploid chromatin contacts and structures.
    Ye T; Ma W
    Nucleic Acids Res; 2020 Dec; 48(21):e123. PubMed ID: 33074315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes.
    Zhan Y; Mariani L; Barozzi I; Schulz EG; Blüthgen N; Stadler M; Tiana G; Giorgetti L
    Genome Res; 2017 Mar; 27(3):479-490. PubMed ID: 28057745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 55. HIFI: estimating DNA-DNA interaction frequency from Hi-C data at restriction-fragment resolution.
    Cameron CJ; Dostie J; Blanchette M
    Genome Biol; 2020 Jan; 21(1):11. PubMed ID: 31937349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MHiC, an integrated user-friendly tool for the identification and visualization of significant interactions in Hi-C data.
    Khakmardan S; Rezvani M; Pouyan AA; Fateh M; Alinejad-Rokny H
    BMC Genomics; 2020 Mar; 21(1):225. PubMed ID: 32164554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measuring significant changes in chromatin conformation with ACCOST.
    Cook KB; Hristov BH; Le Roch KG; Vert JP; Noble WS
    Nucleic Acids Res; 2020 Mar; 48(5):2303-2311. PubMed ID: 32034421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EagleC Explorer: A desktop application for interactively detecting and visualizing SVs and enhancer hijacking on Hi-C contact maps.
    Fu Y; Wang X; Yue F
    bioRxiv; 2023 Aug; ():. PubMed ID: 37609202
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Visualizing and Annotating Hi-C Data.
    Pal K; Ferrari F
    Methods Mol Biol; 2022; 2301():97-132. PubMed ID: 34415532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.