These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 33893398)

  • 1. The basis of a more contagious 501Y.V1 variant of SARS-CoV-2.
    Liu H; Zhang Q; Wei P; Chen Z; Aviszus K; Yang J; Downing W; Jiang C; Liang B; Reynoso L; Downey GP; Frankel SK; Kappler J; Marrack P; Zhang G
    Cell Res; 2021 Jun; 31(6):720-722. PubMed ID: 33893398
    [No Abstract]   [Full Text] [Related]  

  • 2. Structure-based analyses of neutralization antibodies interacting with naturally occurring SARS-CoV-2 RBD variants.
    Xu H; Wang B; Zhao TN; Liang ZT; Peng TB; Song XH; Wu JJ; Wang YC; Su XD
    Cell Res; 2021 Oct; 31(10):1126-1129. PubMed ID: 34480123
    [No Abstract]   [Full Text] [Related]  

  • 3. Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants' spike protein-an in silico analysis.
    Pokhrel S; Kraemer BR; Lee L; Samardzic K; Mochly-Rosen D
    PLoS One; 2021; 16(5):e0251426. PubMed ID: 34038453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor binding, immune escape, and protein stability direct the natural selection of SARS-CoV-2 variants.
    Upadhyay V; Lucas A; Panja S; Miyauchi R; Mallela KMG
    J Biol Chem; 2021 Oct; 297(4):101208. PubMed ID: 34543625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Neutralizing Activity of Antibodies Targeting Open or Closed SARS-CoV-2 Spike Protein Conformations.
    Cia G; Pucci F; Rooman M
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of SARS-CoV-2 B.1.351 neutralizing antibodies provide insights into cocktail design against concerning variants.
    Du S; Liu P; Zhang Z; Xiao T; Yasimayi A; Huang W; Wang Y; Cao Y; Xie XS; Xiao J
    Cell Res; 2021 Oct; 31(10):1130-1133. PubMed ID: 34433900
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural basis for the different states of the spike protein of SARS-CoV-2 in complex with ACE2.
    Yan R; Zhang Y; Li Y; Ye F; Guo Y; Xia L; Zhong X; Chi X; Zhou Q
    Cell Res; 2021 Jun; 31(6):717-719. PubMed ID: 33737693
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthetic Homogeneous Glycoforms of the SARS-CoV-2 Spike Receptor-Binding Domain Reveals Different Binding Profiles of Monoclonal Antibodies.
    Ye F; Zhao J; Xu P; Liu X; Yu J; Shangguan W; Liu J; Luo X; Li C; Ying T; Wang J; Yu B; Wang P
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12904-12910. PubMed ID: 33709491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-produced SARS-CoV-2 receptor binding domain (RBD) variants showed differential binding efficiency with anti-spike specific monoclonal antibodies.
    Rattanapisit K; Bulaon CJI; Khorattanakulchai N; Shanmugaraj B; Wangkanont K; Phoolcharoen W
    PLoS One; 2021; 16(8):e0253574. PubMed ID: 34379620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The SARS-CoV-2 spike protein: balancing stability and infectivity.
    Berger I; Schaffitzel C
    Cell Res; 2020 Dec; 30(12):1059-1060. PubMed ID: 33139926
    [No Abstract]   [Full Text] [Related]  

  • 11. Cryo-electron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies.
    Zhu X; Mannar D; Srivastava SS; Berezuk AM; Demers JP; Saville JW; Leopold K; Li W; Dimitrov DS; Tuttle KS; Zhou S; Chittori S; Subramaniam S
    PLoS Biol; 2021 Apr; 19(4):e3001237. PubMed ID: 33914735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The emerging plasticity of SARS-CoV-2.
    McCormick KD; Jacobs JL; Mellors JW
    Science; 2021 Mar; 371(6536):1306-1308. PubMed ID: 33766871
    [No Abstract]   [Full Text] [Related]  

  • 13. Molecular insights into receptor binding energetics and neutralization of SARS-CoV-2 variants.
    Koehler M; Ray A; Moreira RA; Juniku B; Poma AB; Alsteens D
    Nat Commun; 2021 Nov; 12(1):6977. PubMed ID: 34848718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deamidation drives molecular aging of the SARS-CoV-2 spike protein receptor-binding motif.
    Lorenzo R; Defelipe LA; Aliperti L; Niebling S; Custódio TF; Löw C; Schwarz JJ; Remans K; Craig PO; Otero LH; Klinke S; García-Alai M; Sánchez IE; Alonso LG
    J Biol Chem; 2021 Oct; 297(4):101175. PubMed ID: 34499924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Where did Omicron come from? Three key theories.
    Mallapaty S
    Nature; 2022 Feb; 602(7895):26-28. PubMed ID: 35091701
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms of SARS-CoV-2 Evolution Revealing Vaccine-Resistant Mutations in Europe and America.
    Wang R; Chen J; Wei GW
    J Phys Chem Lett; 2021 Dec; 12(49):11850-11857. PubMed ID: 34873910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of severe acute respiratory syndrome coronavirus 2 infection.
    Ge J; Zhang S; Zhang L; Wang X
    Curr Opin HIV AIDS; 2021 Jan; 16(1):74-81. PubMed ID: 33186231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies: A computational approach.
    Kwarteng A; Asiedu E; Sylverken AA; Larbi A; Sakyi SA; Asiedu SO
    Infect Genet Evol; 2021 Jul; 91():104815. PubMed ID: 33774178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tackling COVID-19 with neutralizing monoclonal antibodies.
    Corti D; Purcell LA; Snell G; Veesler D
    Cell; 2021 Jun; 184(12):3086-3108. PubMed ID: 34087172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting SARS-CoV-2 spike protein by stapled hACE2 peptides.
    Maas MN; Hintzen JCJ; Löffler PMG; Mecinović J
    Chem Commun (Camb); 2021 Apr; 57(26):3283-3286. PubMed ID: 33651072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.