These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33893558)

  • 1. A formalism for modelling traction forces and cell shape evolution during cell migration in various biomedical processes.
    Peng Q; Vermolen FJ; Weihs D
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1459-1475. PubMed ID: 33893558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between a phenomenological approach and a morphoelasticity approach regarding the displacement of extracellular matrix.
    Peng Q; Gorter WS; Vermolen FJ
    Biomech Model Mechanobiol; 2022 Jun; 21(3):919-935. PubMed ID: 35403944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling cell motility and chemotaxis with evolving surface finite elements.
    Elliott CM; Stinner B; Venkataraman C
    J R Soc Interface; 2012 Nov; 9(76):3027-44. PubMed ID: 22675164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.
    Zielinski R; Mihai C; Kniss D; Ghadiali SN
    J Biomech Eng; 2013 Jul; 135(7):71009. PubMed ID: 23720059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traction Force Microscopy in 3-Dimensional Extracellular Matrix Networks.
    Cóndor M; Steinwachs J; Mark C; García-Aznar JM; Fabry B
    Curr Protoc Cell Biol; 2017 Jun; 75():10.22.1-10.22.20. PubMed ID: 28627753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanobiological model to study upstream cell migration guided by tensotaxis.
    Rosalem GS; Las Casas EB; Lima TP; González-Torres LA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1537-1549. PubMed ID: 32006123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell adhesion, and extracellular matrix rigidity.
    Ramos JRD; Travasso R; Carvalho J
    Phys Rev E; 2018 Jan; 97(1-1):012408. PubMed ID: 29448490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agent-based modelling and parameter sensitivity analysis with a finite-element method for skin contraction.
    Peng Q; Vermolen F
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2525-2551. PubMed ID: 32623543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A phenomenological model for cell and nucleus deformation during cancer metastasis.
    Chen J; Weihs D; Van Dijk M; Vermolen FJ
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1429-1450. PubMed ID: 29845458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration.
    Malik AA; Wennberg B; Gerlee P
    Bull Math Biol; 2020 Apr; 82(4):49. PubMed ID: 32248312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational model of amoeboid cell migration.
    Lim FY; Koon YL; Chiam KH
    Comput Methods Biomech Biomed Engin; 2013 Oct; 16(10):1085-95. PubMed ID: 23342988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modelling of the angiogenesis process in wound contraction.
    Valero C; Javierre E; García-Aznar JM; Gómez-Benito MJ
    Biomech Model Mechanobiol; 2013 Apr; 12(2):349-60. PubMed ID: 22584608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers.
    Schlüter DK; Ramis-Conde I; Chaplain MA
    Biophys J; 2012 Sep; 103(6):1141-51. PubMed ID: 22995486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization.
    Zhao J; Cao Y; DiPietro LA; Liang J
    J R Soc Interface; 2017 Apr; 14(129):. PubMed ID: 28404867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates.
    Mousavi SJ; Doweidar MH
    PLoS One; 2015; 10(3):e0122094. PubMed ID: 25822332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical model for cellular shapes driven by protrusive and adhesive forces.
    Kabaso D; Shlomovitz R; Schloen K; Stradal T; Gov NS
    PLoS Comput Biol; 2011 May; 7(5):e1001127. PubMed ID: 21573201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical estimation of 3D mechanical forces exerted by cells on non-linear materials.
    Palacio J; Jorge-Peñas A; Muñoz-Barrutia A; Ortiz-de-Solorzano C; de Juan-Pardo E; García-Aznar JM
    J Biomech; 2013 Jan; 46(1):50-5. PubMed ID: 23141954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of Green's function for three-dimensional traction force reconstruction based on geometry and boundary conditions of cell culture matrices.
    Du Y; Herath SCB; Wang QG; Asada H; Chen PCY
    Acta Biomater; 2018 Feb; 67():215-228. PubMed ID: 29242157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling force application configurations and morphologies required for cancer cell invasion.
    Ben-David Y; Weihs D
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1187-1194. PubMed ID: 33683515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new 3D finite element-based approach for computing cell surface tractions assuming nonlinear conditions.
    Hervas-Raluy S; Gomez-Benito MJ; Borau-Zamora C; Cóndor M; Garcia-Aznar JM
    PLoS One; 2021; 16(4):e0249018. PubMed ID: 33852586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.