These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33893573)

  • 21. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model.
    Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of elemental microanalysis for estimation of osteoinduction and osteoconduction of hydroxyapatite bone implants].
    Dawidowicz A; Pielka S; Paluch D; Kuryszko J; Staniszewska-Kuś J; Solski L
    Polim Med; 2005; 35(1):3-14. PubMed ID: 16050072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice.
    Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D
    Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of porous biphasic calcium phosphate ceramics for anterior cervical interbody fusion in a caprine model.
    Toth JM; An HS; Lim TH; Ran Y; Weiss NG; Lundberg WR; Xu RM; Lynch KL
    Spine (Phila Pa 1976); 1995 Oct; 20(20):2203-10. PubMed ID: 8545713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect.
    Rojbani H; Nyan M; Ohya K; Kasugai S
    J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of sintering temperature over 1,300 degrees C on the physical and compositional properties of porous hydroxyapatite foam.
    Munar ML; Udoh K; Ishikawa K; Matsuya S; Nakagawa M
    Dent Mater J; 2006 Mar; 25(1):51-8. PubMed ID: 16706297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study.
    Sotome S; Ae K; Okawa A; Ishizuki M; Morioka H; Matsumoto S; Nakamura T; Abe S; Beppu Y; Shinomiya K
    J Orthop Sci; 2016 May; 21(3):373-80. PubMed ID: 26961287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy.
    Oh KJ; Ko YB; Jaiswal S; Whang IC
    J Mater Sci Mater Med; 2016 Dec; 27(12):179. PubMed ID: 27757780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication and evaluation of interconnected porous carbonate apatite from alpha tricalcium phosphate spheres.
    Ishikawa K; Arifta TI; Hayashi K; Tsuru K
    J Biomed Mater Res B Appl Biomater; 2019 Feb; 107(2):269-277. PubMed ID: 29577584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bone augmentation with autologous periosteal cells and two different calcium phosphate scaffolds under an occlusive titanium barrier: an experimental study in rabbits.
    Maréchal M; Eyckmans J; Schrooten J; Schepers E; Luyten FP; van Steenberghe D
    J Periodontol; 2008 May; 79(5):896-904. PubMed ID: 18454669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo implantation of porous titanium alloy implants coated with magnesium-doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion.
    Mróz W; Budner B; Syroka R; Niedzielski K; Golański G; Slósarczyk A; Schwarze D; Douglas TE
    J Biomed Mater Res B Appl Biomater; 2015 Jan; 103(1):151-8. PubMed ID: 24801401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unidirectional porous beta-tricalcium phosphate promotes angiogenesis in a vascularized pedicle rat model.
    Murayama A; Ajiki T; Hayashi Y; Takeshita K
    J Orthop Sci; 2019 Nov; 24(6):1118-1124. PubMed ID: 31421947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic evaluation of bone-implant contact between hydroxyapatite, bioactive glass and tricalcium phosphate implanted in sheep diaphyseal defects.
    Gao TJ; Lindholm TS; Kommonen B; Ragni P; Paronzini A; Lindholm TC
    Biomaterials; 1995 Oct; 16(15):1175-9. PubMed ID: 8562795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A clinical trial of a unidirectional porous tricalcium phosphate filling for defects after resection of benign bone lesions: a prospective multicenter study.
    Ikuta K; Nishida Y; Ota T; Tsukushi S; Kozawa E; Nakashima H; Yamada K; Yamashita S; Imagama S
    Sci Rep; 2022 Sep; 12(1):16060. PubMed ID: 36163414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative characterization of porous commercial and experimental bone graft substitutes with microcomputed tomography.
    Ylä-Soininmäki A; Moritz N; Turco G; Paoletti S; Aro HT
    J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1538-48. PubMed ID: 23744797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo.
    Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H
    Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects.
    Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL
    Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative in vivo study of six hydroxyapatite-based bone graft substitutes.
    Habibovic P; Kruyt MC; Juhl MV; Clyens S; Martinetti R; Dolcini L; Theilgaard N; van Blitterswijk CA
    J Orthop Res; 2008 Oct; 26(10):1363-70. PubMed ID: 18404698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation.
    Carrel JP; Wiskott A; Moussa M; Rieder P; Scherrer S; Durual S
    Clin Oral Implants Res; 2016 Jan; 27(1):55-62. PubMed ID: 25350936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute.
    Shimazaki K; Mooney V
    J Orthop Res; 1985; 3(3):301-10. PubMed ID: 2411894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.