BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33893674)

  • 21. Shedding Light on Alzheimer's β-Amyloidosis: Photosensitized Methylene Blue Inhibits Self-Assembly of β-Amyloid Peptides and Disintegrates Their Aggregates.
    Lee BI; Suh YS; Chung YJ; Yu K; Park CB
    Sci Rep; 2017 Aug; 7(1):7523. PubMed ID: 28790398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents.
    Du Z; Li M; Ren J; Qu X
    Acc Chem Res; 2021 May; 54(9):2172-2184. PubMed ID: 33881820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pre-Clinical Neuroprotective Evidences and Plausible Mechanisms of Sulforaphane in Alzheimer's Disease.
    Kim J
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33805772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anti-amyloid potential of some phytochemicals against Aβ-peptide and α-synuclein, tau, prion, and Huntingtin protein.
    Jerom JP; Madhukumar S; Nair RH; Narayanan SP
    Drug Discov Today; 2023 Dec; 28(12):103802. PubMed ID: 37858630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders.
    Choonara YE; Pillay V; Du Toit LC; Modi G; Naidoo D; Ndesendo VMK; Sibambo SR
    Int J Mol Sci; 2009 Jun; 10(6):2510-2557. PubMed ID: 19582217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.
    Joshi P; Chia S; Habchi J; Knowles TP; Dobson CM; Vendruscolo M
    ACS Comb Sci; 2016 Mar; 18(3):144-53. PubMed ID: 26923286
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metformin in Alzheimer's disease: An overview of potential mechanisms, preclinical and clinical findings.
    Khezri MR; Yousefi K; Mahboubi N; Hodaei D; Ghasemnejad-Berenji M
    Biochem Pharmacol; 2022 Mar; 197():114945. PubMed ID: 35134385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study.
    Doytchinova I; Atanasova M; Salamanova E; Ivanov S; Dimitrov I
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32942739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders.
    Di Domenico F; Tramutola A; Butterfield DA
    Free Radic Biol Med; 2017 Oct; 111():253-261. PubMed ID: 27789292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A meta-analysis and review examining a possible role for oxidative stress and singlet oxygen in diverse diseases.
    Petrou AL; Terzidaki A
    Biochem J; 2017 Aug; 474(16):2713-2731. PubMed ID: 28768713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amyloidogenesis of Tau protein.
    Nizynski B; Dzwolak W; Nieznanski K
    Protein Sci; 2017 Nov; 26(11):2126-2150. PubMed ID: 28833749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer's Disease.
    Shahbaz SK; Koushki K; Sathyapalan T; Majeed M; Sahebkar A
    Curr Neuropharmacol; 2022; 20(2):309-323. PubMed ID: 34429054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic Curcumin Analogs as Inhibitors of β -Amyloid Peptide Aggregation: Potential Therapeutic and Diagnostic Agents for Alzheimer's Disease.
    Bukhari SN; Jantan I
    Mini Rev Med Chem; 2015; 15(13):1110-21. PubMed ID: 26420724
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies.
    Ciechanover A; Kwon YT
    Exp Mol Med; 2015 Mar; 47(3):e147. PubMed ID: 25766616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of curcumin-based amyloid β aggregation inhibitors for Alzheimer's disease using the SAR matrix approach.
    Yudi Utomo R; Asawa Y; Okada S; Ban HS; Yoshimori A; Bajorath J; Nakamura H
    Bioorg Med Chem; 2021 Sep; 46():116357. PubMed ID: 34391121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural Phenolic Compounds as Therapeutic and Preventive Agents for Cerebral Amyloidosis.
    Yamada M; Ono K; Hamaguchi T; Noguchi-Shinohara M
    Adv Exp Med Biol; 2015; 863():79-94. PubMed ID: 26092627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer's disease.
    Reddy PH; Manczak M; Yin X; Grady MC; Mitchell A; Kandimalla R; Kuruva CS
    J Investig Med; 2016 Dec; 64(8):1220-1234. PubMed ID: 27521081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Is there a common intracellular bioreactor in which amyloid formation is initiated in neurodegenerative diseases?
    Mayer RJ; Landon M; Lowe J; Tipler C; Arnold J; Laszlo L
    Biochem Soc Trans; 1994 Feb; 22(1):151-5. PubMed ID: 8206213
    [No Abstract]   [Full Text] [Related]  

  • 39. Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases.
    Konovalova J; Gerasymchuk D; Parkkinen I; Chmielarz P; Domanskyi A
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noninvasive measurement of protein aggregation by mutant huntingtin fragments or alpha-synuclein in the lens.
    Muchowski PJ; Ramsden R; Nguyen Q; Arnett EE; Greiling TM; Anderson SK; Clark JI
    J Biol Chem; 2008 Mar; 283(10):6330-6. PubMed ID: 18167346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.