These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33893715)

  • 1. In Vivo Degradation Mechanisms of Aliphatic Polycarbonates and Functionalized Aliphatic Polycarbonates.
    Amsden B
    Macromol Biosci; 2021 Jul; 21(7):e2100085. PubMed ID: 33893715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials.
    Yu W; Maynard E; Chiaradia V; Arno MC; Dove AP
    Chem Rev; 2021 Sep; 121(18):10865-10907. PubMed ID: 33591164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.
    Thomas AW; Dove AP
    Macromol Biosci; 2016 Dec; 16(12):1762-1775. PubMed ID: 27654885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.
    Fukushima K
    Biomater Sci; 2016 Jan; 4(1):9-24. PubMed ID: 26323327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vivo Degradation Mechanism and Biocompatibility of a Biodegradable Aliphatic Polycarbonate: Poly(Trimethylene Carbonate-
    Mohajeri S; Amsden BG
    ACS Appl Bio Mater; 2021 Apr; 4(4):3686-3696. PubMed ID: 35014453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-Based Thermo-Reversible Aliphatic Polycarbonate Network.
    Durand PL; Grau E; Cramail H
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31878284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds.
    Tangpasuthadol V; Pendharkar SM; Kohn J
    Biomaterials; 2000 Dec; 21(23):2371-8. PubMed ID: 11055284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Click Chemistry in Functional Aliphatic Polycarbonates.
    Dai Y; Zhang X; Xia F
    Macromol Rapid Commun; 2017 Oct; 38(19):. PubMed ID: 28795456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation-Responsive Aliphatic Polycarbonates from N-Substituted Eight-Membered Cyclic Carbonate: Synthesis and Degradation Study.
    Qiu FY; Yu L; Du FS; Li ZC
    Macromol Rapid Commun; 2017 Oct; 38(20):. PubMed ID: 28837743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introducing SuFEx click chemistry into aliphatic polycarbonates: a novel toolbox/platform for post-modification as biomaterials.
    Sun W; Lu K; Wang L; Hao Q; Liu J; Wang Y; Wu Z; Chen H
    J Mater Chem B; 2022 Jul; 10(27):5203-5210. PubMed ID: 35734968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of aliphatic and aromatic polycarbonates.
    Artham T; Doble M
    Macromol Biosci; 2008 Jan; 8(1):14-24. PubMed ID: 17849431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols.
    Sommerfeld SD; Zhang Z; Costache MC; Vega SL; Kohn J
    Biomacromolecules; 2014 Mar; 15(3):830-6. PubMed ID: 24432806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications.
    Ansari I; Singh P; Mittal A; Mahato RI; Chitkara D
    Biomaterials; 2021 Aug; 275():120953. PubMed ID: 34218051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TAD Click Chemistry on Aliphatic Polycarbonates: A First Step Toward Tailor-Made Materials.
    Baroni A; Vlaminck L; Mespouille L; Prez FD; Delbosc N; Blankert B
    Macromol Rapid Commun; 2019 Apr; 40(7):e1800743. PubMed ID: 30632642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials.
    Welle A; Kröger M; Döring M; Niederer K; Pindel E; Chronakis IS
    Biomaterials; 2007 Apr; 28(13):2211-9. PubMed ID: 17275083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methoxy-Functionalized Glycerol-Based Aliphatic Polycarbonate: Organocatalytic Synthesis, Blood Compatibility, and Hydrolytic Property.
    Montagna V; Takahashi J; Tsai MY; Ota T; Zivic N; Kawaguchi S; Kato T; Tanaka M; Sardon H; Fukushima K
    ACS Biomater Sci Eng; 2021 Feb; 7(2):472-481. PubMed ID: 33400868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments in biodegradable synthetic polymers.
    Gunatillake P; Mayadunne R; Adhikari R
    Biotechnol Annu Rev; 2006; 12():301-47. PubMed ID: 17045198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerisation.
    Tempelaar S; Mespouille L; Coulembier O; Dubois P; Dove AP
    Chem Soc Rev; 2013 Feb; 42(3):1312-36. PubMed ID: 23151841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO
    Tufano F; Napolitano C; Mazzeo M; Grisi F; Lamberti M
    Biomacromolecules; 2024 Jul; 25(7):4523-4534. PubMed ID: 38916862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.