These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33893715)
21. Use of Light-Degradable Aliphatic Polycarbonate Nanoparticles As Drug Carrier for Photosensitizer. Sun J; Birnbaum W; Anderski J; Picker MT; Mulac D; Langer K; Kuckling D Biomacromolecules; 2018 Dec; 19(12):4677-4690. PubMed ID: 30433767 [TBL] [Abstract][Full Text] [Related]
22. Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. Hedrick JL; Piunova V; Park NH; Erdmann T; Arrechea PL ACS Macro Lett; 2022 Mar; 11(3):368-375. PubMed ID: 35575375 [TBL] [Abstract][Full Text] [Related]
23. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Tangpasuthadol V; Pendharkar SM; Peterson RC; Kohn J Biomaterials; 2000 Dec; 21(23):2379-87. PubMed ID: 11055285 [TBL] [Abstract][Full Text] [Related]
24. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates. Tsai FT; Wang Y; Darensbourg DJ J Am Chem Soc; 2016 Apr; 138(13):4626-33. PubMed ID: 26974858 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Ertel SI; Kohn J J Biomed Mater Res; 1994 Aug; 28(8):919-30. PubMed ID: 7983090 [TBL] [Abstract][Full Text] [Related]
26. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane. Raghunath J; Georgiou G; Armitage D; Nazhat SN; Sales KM; Butler PE; Seifalian AM J Biomed Mater Res A; 2009 Dec; 91(3):834-44. PubMed ID: 19051308 [TBL] [Abstract][Full Text] [Related]
27. Organocatalytic Synthesis of Alkyne-Functional Aliphatic Polycarbonates via Ring-Opening Polymerization of an Eight-Membered-N-Cyclic Carbonate. Bexis P; De Winter J; Arno MC; Coulembier O; Dove AP Macromol Rapid Commun; 2021 Feb; 42(3):e2000378. PubMed ID: 32909337 [TBL] [Abstract][Full Text] [Related]
28. Impact of the structure of biocompatible aliphatic polycarbonates on siRNA transfection ability. Frère A; Kawalec M; Tempelaar S; Peixoto P; Hendrick E; Peulen O; Evrard B; Dubois P; Mespouille L; Mottet D; Piel G Biomacromolecules; 2015 Mar; 16(3):769-79. PubMed ID: 25603322 [TBL] [Abstract][Full Text] [Related]
29. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Chen W; Meng F; Cheng R; Deng C; Feijen J; Zhong Z J Control Release; 2014 Sep; 190():398-414. PubMed ID: 24858708 [TBL] [Abstract][Full Text] [Related]
30. Stable, hydroxyl functional polycarbonates with glycerol side chains synthesized from CO(2) and isopropylidene(glyceryl glycidyl ether). Geschwind J; Frey H Macromol Rapid Commun; 2013 Jan; 34(2):150-5. PubMed ID: 23193023 [TBL] [Abstract][Full Text] [Related]
40. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization. Yang J; Hao Q; Liu X; Ba C; Cao A Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]