These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33894200)

  • 21. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis.
    Laluk K; Luo H; Chai M; Dhawan R; Lai Z; Mengiste T
    Plant Cell; 2011 Aug; 23(8):2831-49. PubMed ID: 21862710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway.
    Niu D; Wang X; Wang Y; Song X; Wang J; Guo J; Zhao H
    Biochem Biophys Res Commun; 2016 Jan; 469(1):120-125. PubMed ID: 26616055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PBL13 Is a Serine/Threonine Protein Kinase That Negatively Regulates Arabidopsis Immune Responses.
    Lin ZJ; Liebrand TW; Yadeta KA; Coaker G
    Plant Physiol; 2015 Dec; 169(4):2950-62. PubMed ID: 26432875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB.
    Tian M; Chaudhry F; Ruzicka DR; Meagher RB; Staiger CJ; Day B
    Plant Physiol; 2009 Jun; 150(2):815-24. PubMed ID: 19346440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.
    Bernsdorff F; Döring AC; Gruner K; Schuck S; Bräutigam A; Zeier J
    Plant Cell; 2016 Jan; 28(1):102-29. PubMed ID: 26672068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4.
    Attaran E; Rostás M; Zeier J
    Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling.
    Luo X; Xu N; Huang J; Gao F; Zou H; Boudsocq M; Coaker G; Liu J
    Plant Physiol; 2017 Aug; 174(4):2501-2514. PubMed ID: 28696275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.
    Macho AP; Boutrot F; Rathjen JP; Zipfel C
    Plant Physiol; 2012 Aug; 159(4):1845-56. PubMed ID: 22730426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis.
    Petersen LN; Ingle RA; Knight MR; Denby KJ
    J Exp Bot; 2009; 60(13):3727-35. PubMed ID: 19574254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonas syringae pv. tomato DC3000.
    Desclos-Theveniau M; Arnaud D; Huang TY; Lin GJ; Chen WY; Lin YC; Zimmerli L
    PLoS Pathog; 2012 Feb; 8(2):e1002513. PubMed ID: 22346749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance.
    Nandi A; Welti R; Shah J
    Plant Cell; 2004 Feb; 16(2):465-77. PubMed ID: 14729910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine homeostasis plays an essential role in plant immunity.
    Álvarez C; Ángeles Bermúdez M; Romero LC; Gotor C; García I
    New Phytol; 2012 Jan; 193(1):165-177. PubMed ID: 21988475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis.
    Ge X; Li GJ; Wang SB; Zhu H; Zhu T; Wang X; Xia Y
    Plant Physiol; 2007 Sep; 145(1):204-15. PubMed ID: 17660350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inositol-requiring enzyme 1 (IRE1) plays for AvrRpt2-triggered immunity and RIN4 cleavage in Arabidopsis under endoplasmic reticulum (ER) stress.
    Chakraborty R; Uddin S; Macoy DM; Park SO; Van Anh DT; Ryu GR; Kim YH; Lee JY; Cha JY; Kim WY; Lee SY; Kim MG
    Plant Physiol Biochem; 2020 Nov; 156():105-114. PubMed ID: 32927152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling.
    Balagué C; Gouget A; Bouchez O; Souriac C; Haget N; Boutet-Mercey S; Govers F; Roby D; Canut H
    Mol Plant Pathol; 2017 Sep; 18(7):937-948. PubMed ID: 27399963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae.
    Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z
    BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolomic analysis reveals the relationship between AZI1 and sugar signaling in systemic acquired resistance of Arabidopsis.
    Wang XY; Li DZ; Li Q; Ma YQ; Yao JW; Huang X; Xu ZQ
    Plant Physiol Biochem; 2016 Oct; 107():273-287. PubMed ID: 27337039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Paraburkholderia phytofirmans PsJN Protects Arabidopsis thaliana Against a Virulent Strain of Pseudomonas syringae Through the Activation of Induced Resistance.
    Timmermann T; Armijo G; Donoso R; Seguel A; Holuigue L; González B
    Mol Plant Microbe Interact; 2017 Mar; 30(3):215-230. PubMed ID: 28118091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1.
    Skryhan K; Cuesta-Seijo JA; Nielsen MM; Marri L; Mellor SB; Glaring MA; Jensen PE; Palcic MM; Blennow A
    PLoS One; 2015; 10(9):e0136997. PubMed ID: 26367870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.