These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 33894228)
1. Crystallin gene expression: Insights from studies of transcriptional bursting. Cvekl A; Eliscovich C Exp Eye Res; 2021 Jun; 207():108564. PubMed ID: 33894228 [TBL] [Abstract][Full Text] [Related]
2. Bidirectional Analysis of Cryba4-Crybb1 Nascent Transcription and Nuclear Accumulation of Crybb3 mRNAs in Lens Fibers. Limi S; Zhao Y; Guo P; Lopez-Jones M; Zheng D; Singer RH; Skoultchi AI; Cvekl A Invest Ophthalmol Vis Sci; 2019 Jan; 60(1):234-244. PubMed ID: 30646012 [TBL] [Abstract][Full Text] [Related]
3. Rbm24 controls poly(A) tail length and translation efficiency of Shao M; Lu T; Zhang C; Zhang YZ; Kong SH; Shi DL Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7245-7254. PubMed ID: 32170011 [TBL] [Abstract][Full Text] [Related]
4. Transcriptional burst fraction and size dynamics during lens fiber cell differentiation and detailed insights into the denucleation process. Limi S; Senecal A; Coleman R; Lopez-Jones M; Guo P; Polumbo C; Singer RH; Skoultchi AI; Cvekl A J Biol Chem; 2018 Aug; 293(34):13176-13190. PubMed ID: 29959226 [TBL] [Abstract][Full Text] [Related]
5. Chromatin features, RNA polymerase II and the comparative expression of lens genes encoding crystallins, transcription factors, and autophagy mediators. Sun J; Rockowitz S; Chauss D; Wang P; Kantorow M; Zheng D; Cvekl A Mol Vis; 2015; 21():955-73. PubMed ID: 26330747 [TBL] [Abstract][Full Text] [Related]
6. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Wang X; Garcia CM; Shui YB; Beebe DC Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068 [TBL] [Abstract][Full Text] [Related]
7. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency. Lachke SA Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599 [TBL] [Abstract][Full Text] [Related]
8. Lens crystallins and their genes: diversity and tissue-specific expression. Piatigorsky J FASEB J; 1989 Jun; 3(8):1933-40. PubMed ID: 2656357 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional control of delta-crystallin gene expression in the chicken embryo lens: demonstration by a new method for measuring mRNA metabolism. Li X; Beebe DC Mol Cell Biol; 1993 Jun; 13(6):3282-90. PubMed ID: 7684494 [TBL] [Abstract][Full Text] [Related]
10. Insulin-like growth factor I and insulin regulate delta-crystallin gene expression in developing lens. Alemany J; Zelenka P; Serrano J; de Pablo F J Biol Chem; 1989 Oct; 264(29):17559-63. PubMed ID: 2677010 [TBL] [Abstract][Full Text] [Related]
11. Crystallin mRNA concentrations and distribution in lens of normal and galactosemic rats. Implications in development of sugar cataracts. Wen Y; Shi ST; Unakar NJ; Bekhor I Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1638-47. PubMed ID: 1707863 [TBL] [Abstract][Full Text] [Related]
12. Rise and fall of crystallin gene messenger levels during fibroblast growth factor induced terminal differentiation of lens cells. Peek R; McAvoy JW; Lubsen NH; Schoenmakers JG Dev Biol; 1992 Jul; 152(1):152-60. PubMed ID: 1628753 [TBL] [Abstract][Full Text] [Related]
13. The expression of chick alpha A2-crystallin RNA during lens development and transdifferentiation. Errington LH; Bower J; Cuthbert J; Clayton RM Biol Cell; 1985; 54(2):101-8. PubMed ID: 2933101 [TBL] [Abstract][Full Text] [Related]
14. delta- and beta-Crystallin mRNA levels in the embryonic and posthatched chicken lens: temporal and spatial changes during development. Hejtmancik JF; Beebe DC; Ostrer H; Piatigorsky J Dev Biol; 1985 May; 109(1):72-81. PubMed ID: 3987967 [TBL] [Abstract][Full Text] [Related]
15. Lens Development and Crystallin Gene Expression. Cvekl A; McGreal R; Liu W Prog Mol Biol Transl Sci; 2015; 134():129-67. PubMed ID: 26310154 [TBL] [Abstract][Full Text] [Related]
16. p53 directly regulates αA- and βA3/A1-crystallin genes to modulate lens differentiation. Ji WK; Tang XC; Yi M; Chen PQ; Liu FY; Hu XH; Hu WF; Fu SJ; Liu JF; Wu KL; Wu MX; Liu XL; Luo LX; Huang S; Liu ZZ; Yu MB; Liu YZ; Li DW Curr Mol Med; 2013 Jul; 13(6):968-78. PubMed ID: 23745585 [TBL] [Abstract][Full Text] [Related]
17. Tissue-specific regulation of the mouse alphaA-crystallin gene in lens via recruitment of Pax6 and c-Maf to its promoter. Yang Y; Cvekl A J Mol Biol; 2005 Aug; 351(3):453-69. PubMed ID: 16023139 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional profiling of single fiber cells in a transgenic paradigm of an inherited childhood cataract reveals absence of molecular heterogeneity. Bhat SP; Gangalum RK; Kim D; Mangul S; Kashyap RK; Zhou X; Elashoff D J Biol Chem; 2019 Sep; 294(37):13530-13544. PubMed ID: 31243103 [TBL] [Abstract][Full Text] [Related]
19. Analysis of long-range chromatin contacts, compartments and looping between mouse embryonic stem cells, lens epithelium and lens fibers. Camerino M; Chang W; Cvekl A Epigenetics Chromatin; 2024 Apr; 17(1):10. PubMed ID: 38643244 [TBL] [Abstract][Full Text] [Related]
20. Developmental expression of crystallin genes: in situ hybridization reveals a differential localization of specific mRNAs. Van Leen RW; Breuer ML; Lubsen NH; Schoenmakers JG Dev Biol; 1987 Oct; 123(2):338-45. PubMed ID: 3653512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]