BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

953 related articles for article (PubMed ID: 33894350)

  • 1. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration.
    Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F
    Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligoaniline-based conductive biomaterials for tissue engineering.
    Zarrintaj P; Bakhshandeh B; Saeb MR; Sefat F; Rezaeian I; Ganjali MR; Ramakrishna S; Mozafari M
    Acta Biomater; 2018 May; 72():16-34. PubMed ID: 29625254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery.
    Piantanida E; Alonci G; Bertucci A; De Cola L
    Acc Chem Res; 2019 Aug; 52(8):2101-2112. PubMed ID: 31291090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration.
    Guo B; Qu J; Zhao X; Zhang M
    Acta Biomater; 2019 Jan; 84():180-193. PubMed ID: 30528606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Healing Injectable Hydrogels for Tissue Regeneration.
    Bertsch P; Diba M; Mooney DJ; Leeuwenburgh SCG
    Chem Rev; 2023 Jan; 123(2):834-873. PubMed ID: 35930422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable conductive collagen/alginate/polypyrrole hydrogels as a biocompatible system for biomedical applications.
    Ketabat F; Karkhaneh A; Mehdinavaz Aghdam R; Hossein Ahmadi Tafti S
    J Biomater Sci Polym Ed; 2017 Jun; 28(8):794-805. PubMed ID: 28278043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of conducting polymers to wound care and skin tissue engineering: A review.
    Talikowska M; Fu X; Lisak G
    Biosens Bioelectron; 2019 Jun; 135():50-63. PubMed ID: 30999241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exquisite design of injectable Hydrogels in Cartilage Repair.
    Wu J; Chen Q; Deng C; Xu B; Zhang Z; Yang Y; Lu T
    Theranostics; 2020; 10(21):9843-9864. PubMed ID: 32863963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications.
    Bi B; Liu H; Kang W; Zhuo R; Jiang X
    Colloids Surf B Biointerfaces; 2019 Mar; 175():614-624. PubMed ID: 30583217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of an in vivo injectable hydrogel with effervescently generated porosity for regenerative medicine applications.
    Griveau L; Lafont M; le Goff H; Drouglazet C; Robbiani B; Berthier A; Sigaudo-Roussel D; Latif N; Visage CL; Gache V; Debret R; Weiss P; Sohier J
    Acta Biomater; 2022 Mar; 140():324-337. PubMed ID: 34843951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering.
    Steele AN; Stapleton LM; Farry JM; Lucian HJ; Paulsen MJ; Eskandari A; Hironaka CE; Thakore AD; Wang H; Yu AC; Chan D; Appel EA; Woo YJ
    Adv Healthc Mater; 2019 Mar; 8(5):e1801147. PubMed ID: 30714355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ forming injectable hydrogels for drug delivery and wound repair.
    Dimatteo R; Darling NJ; Segura T
    Adv Drug Deliv Rev; 2018 Mar; 127():167-184. PubMed ID: 29567395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in injectable self-healing biomedical hydrogels.
    Tu Y; Chen N; Li C; Liu H; Zhu R; Chen S; Xiao Q; Liu J; Ramakrishna S; He L
    Acta Biomater; 2019 May; 90():1-20. PubMed ID: 30951899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications.
    Shi H; Dai Z; Sheng X; Xia D; Shao P; Yang L; Luo X
    Sci Total Environ; 2021 Sep; 786():147430. PubMed ID: 33964778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering.
    Ghovvati M; Kharaziha M; Ardehali R; Annabi N
    Adv Healthc Mater; 2022 Jul; 11(13):e2200055. PubMed ID: 35368150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injecting hope: chitosan hydrogels as bone regeneration innovators.
    Vaidya G; Pramanik S; Kadi A; Rayshan AR; Abualsoud BM; Ansari MJ; Masood R; Michaelson J
    J Biomater Sci Polym Ed; 2024 Apr; 35(5):756-797. PubMed ID: 38300215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives.
    Marsudi MA; Ariski RT; Wibowo A; Cooper G; Barlian A; Rachmantyo R; Bartolo PJDS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.