These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33894466)

  • 1. Sex differences in postural control under unstable conditions in schoolchildren with accelerometric assessment.
    García-Liñeira J; Leirós-Rodríguez R; Romo-Pérez V; García-Soidán JL
    Gait Posture; 2021 Jun; 87():81-86. PubMed ID: 33894466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Visual Information and Sex on Postural Control in Children Aged 6-12 Years Assessed with Accelerometric Technology.
    García-Liñeira J; Leirós-Rodríguez R; Chinchilla-Minguet JL; García-Soidán JL
    Diagnostics (Basel); 2021 Apr; 11(4):. PubMed ID: 33916076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of accelerometric assessment of balance in children aged 6-12 years.
    García-Liñeira J; García-Soidán JL; Romo-Pérez V; Leirós-Rodríguez R
    BMC Pediatr; 2020 Apr; 20(1):161. PubMed ID: 32290824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forceplate and accelerometer measures for evaluating the effect of muscle fatigue on postural control during one-legged stance.
    Adlerton AK; Moritz U; Moe-Nilssen R
    Physiother Res Int; 2003; 8(4):187-99. PubMed ID: 14730723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percentiles and Reference Values for the Accelerometric Assessment of Static Balance in Women Aged 50-80 Years.
    Leirós-Rodríguez R; Romo-Pérez V; García-Soidán JL; García-Liñeira J
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32050701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does lower limb dominance influence postural control movements during single leg stance?
    Promsri A; Haid T; Federolf P
    Hum Mov Sci; 2018 Apr; 58():165-174. PubMed ID: 29448161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of accelerometry with clinical balance tests in older fallers and non-fallers.
    O'Sullivan M; Blake C; Cunningham C; Boyle G; Finucane C
    Age Ageing; 2009 May; 38(3):308-13. PubMed ID: 19252205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory postural adjustments associated with a forward leg raising in children: effects of age, segmental acceleration and sensory context.
    Palluel E; Ceyte H; Olivier I; Nougier V
    Clin Neurophysiol; 2008 Nov; 119(11):2546-54. PubMed ID: 18789757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related?
    García-Soidán JL; García-Liñeira J; Leirós-Rodríguez R; Soto-Rodríguez A
    J Clin Med; 2020 Sep; 9(9):. PubMed ID: 32927763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of postural control during single-leg standing in children aged 3-10 years.
    Mani H; Miyagishima S; Kozuka N; Kodama Y; Takeda K; Asaka T
    Gait Posture; 2019 Feb; 68():174-180. PubMed ID: 30497037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory organization of balance responses in children 3-6 years of age: a normative study with diagnostic implications.
    Foudriat BA; Di Fabio RP; Anderson JH
    Int J Pediatr Otorhinolaryngol; 1993 Oct; 27(3):255-71. PubMed ID: 8270364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Usefulness of the tri-axial accelerometer for assessing balance function in children.
    Eguchi R; Takada S
    Pediatr Int; 2014 Oct; 56(5):753-8. PubMed ID: 24802955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of postural control in 6-17 old years healthy children. Part I Postural control evaluation in modified Clinical Test for The Sensory Interaction on Balance in 6-17 old year children (mctsib).
    Orendorz-Frączkowska K; Kubacka M
    Otolaryngol Pol; 2019 Jul; 74(1):1-7. PubMed ID: 32020900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical analysis of single-leg stance using a textured balance board compared to a smooth balance board and the floor: A cross-sectional study.
    Alfuth M; Ebert M; Klemp J; Knicker A
    Gait Posture; 2021 Feb; 84():215-220. PubMed ID: 33360917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postural control of typical developing boys during the transition from double-leg stance to single-leg stance.
    Deschamps K; Staes F; Peerlinck K; Van Geet K; Hermans C; Lobet S
    Eur J Pediatr; 2017 Feb; 176(2):273-278. PubMed ID: 28000036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic foot muscles act to stabilise the foot when greater fluctuations in centre of pressure movement result from increased postural balance challenge.
    Ferrari E; Cooper G; Reeves ND; Hodson-Tole EF
    Gait Posture; 2020 Jun; 79():229-233. PubMed ID: 32446178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Balance control: sex and age differences in 9- to 16-year-olds.
    Nolan L; Grigorenko A; Thorstensson A
    Dev Med Child Neurol; 2005 Jul; 47(7):449-54. PubMed ID: 15991864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements.
    Lee CH; Sun TL
    J Physiol Anthropol; 2018 Dec; 37(1):27. PubMed ID: 30545421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leg Dominance-Surface Stability Interaction: Effects on Postural Control Assessed by Smartphone-Based Accelerometry.
    Promsri A; Bangkomdet K; Jindatham I; Jenchang T
    Sports (Basel); 2023 Mar; 11(4):. PubMed ID: 37104149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.