BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33894517)

  • 1. Wet organic waste treatment via hydrothermal processing: A critical review.
    Marzbali MH; Kundu S; Halder P; Patel S; Hakeem IG; Paz-Ferreiro J; Madapusi S; Surapaneni A; Shah K
    Chemosphere; 2021 Sep; 279():130557. PubMed ID: 33894517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Opportunity Space for Sustainable Hydrothermal Valorization of Wet Organic Wastes.
    Feng J; Li Y; Strathmann TJ; Guest JS
    Environ Sci Technol; 2024 Feb; 58(5):2528-2541. PubMed ID: 38266239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
    Gerber Van Doren L; Posmanik R; Bicalho FA; Tester JW; Sills DL
    Bioresour Technol; 2017 Feb; 225():67-74. PubMed ID: 27883955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet wastes to bioenergy and biochar: A critical review with future perspectives.
    Li J; Li L; Suvarna M; Pan L; Tabatabaei M; Ok YS; Wang X
    Sci Total Environ; 2022 Apr; 817():152921. PubMed ID: 35007594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste.
    Kannan S; Gariepy Y; Raghavan GSV
    Waste Manag; 2017 Jul; 65():159-168. PubMed ID: 28412097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biowaste hydrothermal carbonization for hydrochar valorization: Skeleton structure, conversion pathways and clean biofuel applications.
    Zhang Z; Yang J; Qian J; Zhao Y; Wang T; Zhai Y
    Bioresour Technol; 2021 Mar; 324():124686. PubMed ID: 33454447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.
    Li L; Hale M; Olsen P; Berge ND
    Waste Manag; 2014 Nov; 34(11):2185-95. PubMed ID: 25074717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process.
    Cavali M; Libardi Junior N; de Sena JD; Woiciechowski AL; Soccol CR; Belli Filho P; Bayard R; Benbelkacem H; de Castilhos Junior AB
    Sci Total Environ; 2023 Jan; 857(Pt 3):159627. PubMed ID: 36280070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis.
    Yang J; Hong C; Xing Y; Zheng Z; Li Z; Zhao X; Qi C
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):7621-7635. PubMed ID: 33398733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.
    Berge ND; Li L; Flora JR; Ro KS
    Waste Manag; 2015 Sep; 43():203-17. PubMed ID: 26049203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal carbonization of municipal waste streams.
    Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S
    Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects.
    Cao L; Zhang C; Chen H; Tsang DCW; Luo G; Zhang S; Chen J
    Bioresour Technol; 2017 Dec; 245(Pt A):1184-1193. PubMed ID: 28893498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities.
    Lachos-Perez D; César Torres-Mayanga P; Abaide ER; Zabot GL; De Castilhos F
    Bioresour Technol; 2022 Jan; 343():126084. PubMed ID: 34610425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-Hydrothermal gasification of Chlorella vulgaris and hydrochar: The effects of waste-to-solid biofuel production and blending concentration on biogas generation.
    Sztancs G; Juhasz L; Nagy BJ; Nemeth A; Selim A; Andre A; Toth AJ; Mizsey P; Fozer D
    Bioresour Technol; 2020 Apr; 302():122793. PubMed ID: 32007846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techno-economic Analysis of Sustainable Biofuels for Marine Transportation.
    Li S; Tan ECD; Dutta A; Snowden-Swan LJ; Thorson MR; Ramasamy KK; Bartling AW; Brasington R; Kass MD; Zaimes GG; Hawkins TR
    Environ Sci Technol; 2022 Dec; 56(23):17206-17214. PubMed ID: 36409825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic hydrothermal carbonization of wet organic solid waste: A review.
    Djandja OS; Liew RK; Liu C; Liang J; Yuan H; He W; Feng Y; Lougou BG; Duan PG; Lu X; Kang S
    Sci Total Environ; 2023 May; 873():162119. PubMed ID: 36773913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A technical review of bioenergy and resource recovery from municipal solid waste.
    Nanda S; Berruti F
    J Hazard Mater; 2021 Feb; 403():123970. PubMed ID: 33265011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An environmental assessment for municipal organic waste and sludge treated by hydrothermal carbonization.
    Espinoza Pérez L; Espinoza Pérez A; Pino-Cortés E; Vallejo F; Díaz-Robles LA
    Sci Total Environ; 2022 Jul; 828():154474. PubMed ID: 35276176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic co-hydrothermal carbonization of food waste digestate and yard waste for energy application and nutrient recovery.
    He M; Zhu X; Dutta S; Khanal SK; Lee KT; Masek O; Tsang DCW
    Bioresour Technol; 2022 Jan; 344(Pt B):126395. PubMed ID: 34822987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.