These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 33894517)

  • 21. Fate of nutrients during hydrothermal treatment of food waste.
    Sarrion A; Diaz E; de la Rubia MA; Mohedano AF
    Bioresour Technol; 2021 Dec; 342():125954. PubMed ID: 34592622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrothermal carbonization of waste biomass: An experimental comparison between process layouts.
    Papa AA; Taglieri L; Gallifuoco A
    Waste Manag; 2020 Aug; 114():72-79. PubMed ID: 32659689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrochar derived from municipal sludge through hydrothermal processing: A critical review on its formation, characterization, and valorization.
    Liu H; Basar IA; Nzihou A; Eskicioglu C
    Water Res; 2021 Jul; 199():117186. PubMed ID: 34010736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment.
    Basso D; Weiss-Hortala E; Patuzzi F; Castello D; Baratieri M; Fiori L
    Bioresour Technol; 2015 Apr; 182():217-224. PubMed ID: 25700341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels.
    Venna S; Sharma HB; Reddy PHP; Chowdhury S; Dubey BK
    Bioresour Technol; 2021 Jan; 320(Pt B):124410. PubMed ID: 33221642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production.
    Wang T; Zhai Y; Li H; Zhu Y; Li S; Peng C; Wang B; Wang Z; Xi Y; Wang S; Li C
    Bioresour Technol; 2018 Nov; 267():371-377. PubMed ID: 30031275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of biomass waste to solid fuel via hydrothermal co-carbonization of distillers grains and sewage sludge.
    Zhao J; Liu C; Hou T; Lei Z; Yuan T; Shimizu K; Zhang Z
    Bioresour Technol; 2022 Feb; 345():126545. PubMed ID: 34902485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oily sludge treatment in subcritical and supercritical water: A review.
    Chen Z; Zheng Z; He C; Liu J; Zhang R; Chen Q
    J Hazard Mater; 2022 Jul; 433():128761. PubMed ID: 35364539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment.
    Saqib NU; Sharma HB; Baroutian S; Dubey B; Sarmah AK
    Sci Total Environ; 2019 Nov; 690():261-276. PubMed ID: 31288117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Review of the Design and Performance of Catalysts for Hydrothermal Gasification of Biomass to Produce Hydrogen-Rich Gas Fuel.
    Khandelwal K; Boahene P; Nanda S; Dalai AK
    Molecules; 2023 Jun; 28(13):. PubMed ID: 37446799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous-phase product treatment and monetization options of wet waste hydrothermal liquefaction: Comprehensive techno-economic and life-cycle GHG emission assessment unveiling research opportunities.
    Jiang Y; Ou L; Snowden-Swan L; Cai H; Li S; Ramasamy K; Schmidt A; Wang H; Santosa DM; Olarte MV; Guo M; Thorson MR
    Bioresour Technol; 2024 Apr; 397():130504. PubMed ID: 38423484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities.
    Leng L; Zhang W; Leng S; Chen J; Yang L; Li H; Jiang S; Huang H
    Sci Total Environ; 2020 Dec; 748():142383. PubMed ID: 33113702
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes.
    Pecchi M; Baratieri M; Goldfarb JL; Maag AR
    Bioresour Technol; 2022 Mar; 348():126799. PubMed ID: 35122980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.
    Huang HJ; Yuan XZ
    Bioresour Technol; 2016 Jan; 200():991-8. PubMed ID: 26577578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valorization of horse manure through catalytic supercritical water gasification.
    Nanda S; Dalai AK; Gökalp I; Kozinski JA
    Waste Manag; 2016 Jun; 52():147-58. PubMed ID: 27067100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Uncovering the transition between hydrothermal carbonization and liquefaction via secondary char extraction: A case study using food waste.
    Pecchi M; Baratieri M; Maag AR; Goldfarb JL
    Waste Manag; 2023 Aug; 168():281-289. PubMed ID: 37329834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acid-mediated hydrothermal treatment of sewage sludge for nutrient recovery.
    Sarrion A; de la Rubia A; Coronella C; Mohedano AF; Diaz E
    Sci Total Environ; 2022 Sep; 838(Pt 4):156494. PubMed ID: 35667432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Co-processing of common plastics with pistachio hulls via hydrothermal liquefaction.
    Hongthong S; Raikova S; Leese HS; Chuck CJ
    Waste Manag; 2020 Feb; 102():351-361. PubMed ID: 31726315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Co-hydrothermal carbonization of sewage sludge and model compounds of food waste: Influence of mutual interaction on nitrogen transformation.
    Wang Z; Huang J; Wang B; Hu W; Xie D; Liu S; Qiao Y
    Sci Total Environ; 2022 Feb; 807(Pt 3):150997. PubMed ID: 34656588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.