These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33894961)
1. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells. Chen J; Zhang Y; Chen D; Wang T; Yin W; Yang HH; Xu Y; Chen JX; Dai Z; Zou X Anal Chim Acta; 2021 May; 1160():338463. PubMed ID: 33894961 [TBL] [Abstract][Full Text] [Related]
2. Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Li CC; Hu J; Zou X; Luo X; Zhang CY Anal Chem; 2022 Jan; 94(3):1882-1889. PubMed ID: 35000391 [TBL] [Abstract][Full Text] [Related]
3. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
4. A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide. Meng YR; Zhang D; Zou X; Ma F; Kang Q; Zhang CY Talanta; 2021 Mar; 224():121962. PubMed ID: 33379129 [TBL] [Abstract][Full Text] [Related]
5. Specific discrimination and universal signal amplification for RNA detection by coupling toehold exchange with RCA through nucleolytic conversion of a structure-switched hairpin probe. Yu W; Li J; Zuo C; Tao Y; Bai S; Li J; Zhang Z; Xie G Anal Chim Acta; 2019 Aug; 1068():96-103. PubMed ID: 31072482 [TBL] [Abstract][Full Text] [Related]
6. Lighting Up Nucleic Acid Modifications in Single Cells with DNA-Encoded Amplification. Chen F; Xue J; Bai M; Fan C; Zhao Y Acc Chem Res; 2022 Aug; 55(16):2248-2259. PubMed ID: 35904502 [TBL] [Abstract][Full Text] [Related]
7. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Long Y; Zhou X; Xing D Biosens Bioelectron; 2013 Aug; 46():102-7. PubMed ID: 23517825 [TBL] [Abstract][Full Text] [Related]
8. Programmable DNA Ring/Hairpin-Constrained Structure Enables Ligation-Free Rolling Circle Amplification for Imaging mRNAs in Single Cells. Zhou W; Li D; Yuan R; Xiang Y Anal Chem; 2019 Mar; 91(5):3628-3635. PubMed ID: 30735035 [TBL] [Abstract][Full Text] [Related]
9. Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection. Liu D; Li W; Yang M; Qiu L; Pian H; Huang Y; Chen M; Zheng Z Biosens Bioelectron; 2021 Nov; 192():113507. PubMed ID: 34330037 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification. Xu H; Zhang Y; Zhang S; Sun M; Li W; Jiang Y; Wu ZS Anal Chim Acta; 2019 Jan; 1047():172-178. PubMed ID: 30567647 [TBL] [Abstract][Full Text] [Related]
11. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection. Li C; Qiu X; Hou Z; Deng K Biosens Bioelectron; 2015 Feb; 64():505-10. PubMed ID: 25299987 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in rolling circle amplification-based biosensing strategies-A review. Xu L; Duan J; Chen J; Ding S; Cheng W Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384 [TBL] [Abstract][Full Text] [Related]
13. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. Bi S; Cui Y; Li L Analyst; 2013 Jan; 138(1):197-203. PubMed ID: 23148205 [TBL] [Abstract][Full Text] [Related]
14. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification. Yi X; Li L; Peng Y; Guo L Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524 [TBL] [Abstract][Full Text] [Related]
15. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z; Qing Z; He X; Wang K; He D; Shi H; Yang X; Qing T; Yang X Talanta; 2014 Jul; 125():306-12. PubMed ID: 24840448 [TBL] [Abstract][Full Text] [Related]
16. A dual-signal amplification strategy based on rolling circle amplification and APE1-assisted amplification for highly sensitive and specific miRNA analysis for early diagnosis of alzheimer's disease. Xie J; Chen J; Zhang Y; Li C; Liu P; Duan WJ; Chen JX; Chen J; Dai Z; Li M Talanta; 2024 May; 272():125747. PubMed ID: 38364557 [TBL] [Abstract][Full Text] [Related]
17. Sensitive RNA detection by combining three-way junction formation and primer generation-rolling circle amplification. Murakami T; Sumaoka J; Komiyama M Nucleic Acids Res; 2012 Feb; 40(3):e22. PubMed ID: 22127872 [TBL] [Abstract][Full Text] [Related]
18. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors. Zhang K; Wang L; Zhao H; Jiang W Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240 [TBL] [Abstract][Full Text] [Related]
19. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related]
20. Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Deng R; Tang L; Tian Q; Wang Y; Lin L; Li J Angew Chem Int Ed Engl; 2014 Feb; 53(9):2389-93. PubMed ID: 24469913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]