These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33895247)

  • 61. Gene-expression analysis of cold-stress response in the sexually transmitted protist Trichomonas vaginalis.
    Fang YK; Huang KY; Huang PJ; Lin R; Chao M; Tang P
    J Microbiol Immunol Infect; 2015 Dec; 48(6):662-75. PubMed ID: 25440978
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel 6-pyrophosphorylating IP6 kinase (IP6-6K) discovered in the protozoon Trichomonas vaginalis.
    Wundenberg T; Nalaskowski MM; Löser B; Fanick W; Hackl T; Fürnkranz U; Rehbach C; Lin H; Mayr GW
    Mol Biochem Parasitol; 2019 Jan; 227():53-63. PubMed ID: 30593849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of a novel starch-based dietary fiber using glucanotransferase.
    Yang Y; Zhao X; Zhang T; Hamaker BR; Miao M
    Food Funct; 2021 Jul; 12(13):5745-5754. PubMed ID: 34018517
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Glycogen phosphorylase sequences from the amitochondriate protists, Trichomonas vaginalis, Mastigamoeba balamuthi, Entamoeba histolytica and Giardia intestinalis.
    Wu G; Müller M
    J Eukaryot Microbiol; 2003; 50(5):366-72. PubMed ID: 14563176
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Protein cysteine S-nitrosylation provides reducing power by enhancing lactate dehydrogenase activity in Trichomonas vaginalis under iron deficiency.
    Cheng WH; Huang KY; Ong SC; Ku FM; Huang PJ; Lee CC; Yeh YM; Lin R; Chiu CH; Tang P
    Parasit Vectors; 2020 Sep; 13(1):477. PubMed ID: 32948226
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of the catalytic residues of bifunctional glycogen debranching enzyme.
    Nakayama A; Yamamoto K; Tabata S
    J Biol Chem; 2001 Aug; 276(31):28824-8. PubMed ID: 11375985
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A machine learning approach to identify hydrogenosomal proteins in Trichomonas vaginalis.
    Burstein D; Gould SB; Zimorski V; Kloesges T; Kiosse F; Major P; Martin WF; Pupko T; Dagan T
    Eukaryot Cell; 2012 Feb; 11(2):217-28. PubMed ID: 22140228
    [TBL] [Abstract][Full Text] [Related]  

  • 68. γ-Carboxymuconolactone decarboxylase: a novel cell cycle-related basal body protein in the early branching eukaryote Trichomonas vaginalis.
    Cheng WH; Huang KY; Huang PJ; Lee CC; Yeh YM; Ku FM; Lin R; Cheng ML; Chiu CH; Tang P
    Parasit Vectors; 2017 Sep; 10(1):443. PubMed ID: 28950916
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Acceptor specificity of 4-alpha-glucanotransferases of mammalian glycogen debranching enzymes.
    Makino Y; Omichi K
    J Biochem; 2006 Mar; 139(3):535-41. PubMed ID: 16567418
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Investigation of starch functionality and digestibility in white wheat bread produced from a recipe containing added maltogenic amylase or amylomaltase.
    Korompokis K; Deleu LJ; De Brier N; Delcour JA
    Food Chem; 2021 Nov; 362():130203. PubMed ID: 34091172
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization.
    van Grinsven KWA; Rosnowsky S; van Weelden SWH; Pütz S; van der Giezen M; Martin W; van Hellemond JJ; Tielens AGM; Henze K
    J Biol Chem; 2008 Jan; 283(3):1411-1418. PubMed ID: 18024431
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756.
    Suzuki R; Koide K; Hayashi M; Suzuki T; Sawada T; Ohdan T; Takahashi H; Nakamura Y; Fujita N; Suzuki E
    Biochim Biophys Acta; 2015 May; 1854(5):476-84. PubMed ID: 25731081
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Immune Response of BALB/c Mice toward Putative Calcium Transporter Recombinant Protein of Trichomonas vaginalis.
    Mendoza-Oliveros T; Arana-Argáez V; Alvaréz-Sánchez LC; Lara-Riegos J; Alvaréz-Sánchez ME; Torres-Romero JC
    Korean J Parasitol; 2019 Feb; 57(1):33-38. PubMed ID: 30840797
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.
    Viscogliosi E; Delgado-Viscogliosi P; Gerbod D; Dauchez M; Gratepanche S; Alix AJ; Dive D
    FEMS Microbiol Lett; 1998 Apr; 161(1):115-23. PubMed ID: 9561738
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis.
    Pütz S; Gelius-Dietrich G; Piotrowski M; Henze K
    Mol Biochem Parasitol; 2005 Aug; 142(2):212-23. PubMed ID: 15904985
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Identification and characterization of a surface-associated, subtilisin-like serine protease in Trichomonas vaginalis.
    Hernández-Romano P; Hernández R; Arroyo R; Alderete JF; López-Villaseñor I
    Parasitology; 2010 Sep; 137(11):1621-35. PubMed ID: 20602853
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Glucose-restriction increases Trichomonas vaginalis cellular damage towards HeLa cells and proteolytic activity of cysteine proteinases (CPs), such as TvCP2.
    Miranda-Ozuna JFT; Rivera-Rivas LA; Cárdenas-Guerra RE; Hernández-García MS; Rodríguez-Cruz S; González-Robles A; Chavez-Munguía B; Arroyo R
    Parasitology; 2019 Aug; 146(9):1156-1166. PubMed ID: 30859930
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran.
    Momeni Z; Sadraei J; Kazemi B; Dalimi A
    Exp Parasitol; 2015 Dec; 159():259-63. PubMed ID: 26542260
    [TBL] [Abstract][Full Text] [Related]  

  • 79. OsmC and incomplete glycine decarboxylase complex mediate reductive detoxification of peroxides in hydrogenosomes of Trichomonas vaginalis.
    Nývltová E; Smutná T; Tachezy J; Hrdý I
    Mol Biochem Parasitol; 2016; 206(1-2):29-38. PubMed ID: 26794804
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Convergent evolution of polysaccharide debranching defines a common mechanism for starch accumulation in cyanobacteria and plants.
    Cenci U; Chabi M; Ducatez M; Tirtiaux C; Nirmal-Raj J; Utsumi Y; Kobayashi D; Sasaki S; Suzuki E; Nakamura Y; Putaux JL; Roussel X; Durand-Terrasson A; Bhattacharya D; Vercoutter-Edouart AS; Maes E; Arias MC; Palcic M; Sim L; Ball SG; Colleoni C
    Plant Cell; 2013 Oct; 25(10):3961-75. PubMed ID: 24163312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.