These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 33895418)
1. Using i-vectors from voice features to identify major depressive disorder. Di Y; Wang J; Li W; Zhu T J Affect Disord; 2021 Jun; 288():161-166. PubMed ID: 33895418 [TBL] [Abstract][Full Text] [Related]
2. Major depressive disorder discrimination using vocal acoustic features. Taguchi T; Tachikawa H; Nemoto K; Suzuki M; Nagano T; Tachibana R; Nishimura M; Arai T J Affect Disord; 2018 Jan; 225():214-220. PubMed ID: 28841483 [TBL] [Abstract][Full Text] [Related]
3. Combining Polygenic Risk Score and Voice Features to Detect Major Depressive Disorders. Di Y; Wang J; Liu X; Zhu T Front Genet; 2021; 12():761141. PubMed ID: 34987547 [No Abstract] [Full Text] [Related]
4. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures. Darch J; Milner B; Vaseghi S J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822 [TBL] [Abstract][Full Text] [Related]
5. Ensemble learning with speaker embeddings in multiple speech task stimuli for depression detection. Liu Z; Yu H; Li G; Chen Q; Ding Z; Feng L; Yao Z; Hu B Front Neurosci; 2023; 17():1141621. PubMed ID: 37034153 [TBL] [Abstract][Full Text] [Related]
6. [A comparative study of pathological voice based on traditional acoustic characteristics and nonlinear features]. Gan D; Hu W; Zhao B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1149-54. PubMed ID: 25764740 [TBL] [Abstract][Full Text] [Related]
7. Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features. Eskidere Ö; Gürhanlı A Comput Math Methods Med; 2015; 2015():956249. PubMed ID: 26681977 [TBL] [Abstract][Full Text] [Related]
8. COPDVD: Automated classification of chronic obstructive pulmonary disease on a new collected and evaluated voice dataset. Idrisoglu A; Dallora AL; Cheddad A; Anderberg P; Jakobsson A; Sanmartin Berglund J Artif Intell Med; 2024 Oct; 156():102953. PubMed ID: 39222579 [TBL] [Abstract][Full Text] [Related]
10. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology? Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the clinical utility of speech analysis and machine learning in schizophrenia: A pilot study. Huang J; Zhao Y; Tian Z; Qu W; Du X; Zhang J; Tan Y; Wang Z; Tan S Comput Biol Med; 2023 Sep; 164():107359. PubMed ID: 37591160 [TBL] [Abstract][Full Text] [Related]
12. The Reproducibility of Bio-Acoustic Features is Associated With Sample Duration, Speech Task, and Gender. Almaghrabi SA; Thewlis D; Thwaites S; Rogasch NC; Lau S; Clark SR; Baumert M IEEE Trans Neural Syst Rehabil Eng; 2022; 30():167-175. PubMed ID: 35038295 [TBL] [Abstract][Full Text] [Related]
13. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach. Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049 [TBL] [Abstract][Full Text] [Related]
14. [Nonlinear acoustic analysis in the evaluation of occupational voice disorders]. Niebudek-Bogusz E; Grygiel J; Strumiłło P; Sliwińska-Kowalska M Med Pr; 2013; 64(1):29-35. PubMed ID: 23650766 [TBL] [Abstract][Full Text] [Related]
15. Detection of Neurogenic Voice Disorders Using the Fisher Vector Representation of Cepstral Features. Yagnavajjula MK; Alku P; Rao KS; Mitra P J Voice; 2022 Nov; ():. PubMed ID: 36424242 [TBL] [Abstract][Full Text] [Related]
16. Multidirectional regression (MDR)-based features for automatic voice disorder detection. Muhammad G; Mesallam TA; Malki KH; Farahat M; Mahmood A; Alsulaiman M J Voice; 2012 Nov; 26(6):817.e19-27. PubMed ID: 23177748 [TBL] [Abstract][Full Text] [Related]
17. Screening major depressive disorder using vocal acoustic features in the elderly by sex. Lee S; Suh SW; Kim T; Kim K; Lee KH; Lee JR; Han G; Hong JW; Han JW; Lee K; Kim KW J Affect Disord; 2021 Aug; 291():15-23. PubMed ID: 34022551 [TBL] [Abstract][Full Text] [Related]
18. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction. Shao X; Milner B J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667 [TBL] [Abstract][Full Text] [Related]
19. Vocal Acoustic Features as Potential Biomarkers for Identifying/Diagnosing Depression: A Cross-Sectional Study. Zhao Q; Fan HZ; Li YL; Liu L; Wu YX; Zhao YL; Tian ZX; Wang ZR; Tan YL; Tan SP Front Psychiatry; 2022; 13():815678. PubMed ID: 35573349 [TBL] [Abstract][Full Text] [Related]
20. X-Vectors: New Quantitative Biomarkers for Early Parkinson's Disease Detection From Speech. Jeancolas L; Petrovska-Delacrétaz D; Mangone G; Benkelfat BE; Corvol JC; Vidailhet M; Lehéricy S; Benali H Front Neuroinform; 2021; 15():578369. PubMed ID: 33679361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]