These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33895446)

  • 1. Creating tidal flow via siphon for better pollutants removal in a microbial fuel cell-constructed wetland.
    Tang C; Zhao Y; Kang C; He J; Yang Y; Morgan D
    J Environ Manage; 2021 Jul; 290():112592. PubMed ID: 33895446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of nitrogen removal and energy recovery from low C/N ratio sewage by multi-electrode electrochemical technology and tidal flow via siphon aeration.
    Zhang K; Yang S; Luo H; Chen J; An X; Chen W; Zhang X
    Chemosphere; 2022 Jul; 299():134376. PubMed ID: 35358555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contaminants removal and bacterial activity enhancement along the flow path of constructed wetland microbial fuel cells.
    Hartl M; Bedoya-Ríos DF; Fernández-Gatell M; Rousseau DPL; Du Laing G; Garfí M; Puigagut J
    Sci Total Environ; 2019 Feb; 652():1195-1208. PubMed ID: 30586806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of vegetation type on treatment performance and bioelectric production of constructed wetland modules combined with microbial fuel cell (CW-MFC) treating synthetic wastewater.
    Saz Ç; Türe C; Türker OC; Yakar A
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8777-8792. PubMed ID: 29327193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance assessment of aeration and radial oxygen loss assisted cathode based integrated constructed wetland-microbial fuel cell systems.
    Srivastava P; Dwivedi S; Kumar N; Abbassi R; Garaniya V; Yadav AK
    Bioresour Technol; 2017 Nov; 244(Pt 1):1178-1182. PubMed ID: 28844691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation.
    Yadav A; Jadhav DA; Ghangrekar MM; Mitra A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51117-51129. PubMed ID: 34826088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland.
    Tao M; Guan L; Jing Z; Tao Z; Wang Y; Luo H; Wang Y
    Sci Total Environ; 2020 Mar; 709():136159. PubMed ID: 31887514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioelectricity generation from air-cathode microbial fuel cell connected to constructed wetland.
    Yan D; Song X; Weng B; Yu Z; Bi W; Wang J
    Water Sci Technol; 2018 Dec; 78(9):1990-1996. PubMed ID: 30566102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-stage hybrid constructed wetland-microbial fuel cells for swine wastewater treatment and bioenergy generation.
    Ren B; Wang T; Zhao Y
    Chemosphere; 2021 Apr; 268():128803. PubMed ID: 33143898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell.
    Yang H; Chen J; Yu L; Li W; Huang X; Qin Q; Zhu S
    Environ Res; 2022 Sep; 212(Pt B):113249. PubMed ID: 35421392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance optimization of two-stage constructed wetland-microbial fuel cell system for the treatment of high-concentration wastewater.
    Han J; Zhao J; Wang Y; Shu L; Tang J
    Environ Sci Pollut Res Int; 2023 May; 30(23):63620-63630. PubMed ID: 37052840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of microbial fuel cell integration into constructed wetland on the performance of constructed wetland.
    Srivastava P; Yadav AK; Mishra BK
    Bioresour Technol; 2015 Nov; 195():223-30. PubMed ID: 26144020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands.
    Srivastava P; Abbassi R; Yadav AK; Garaniya V; Lewis T; Zhao Y; Aminabhavi T
    J Hazard Mater; 2021 Oct; 419():126417. PubMed ID: 34174621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production.
    Mu C; Wang L; Wang L
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell - constructed wetland treating carbon constraint wastewater.
    Tao M; Kong Y; Jing Z; Jia Q; Tao Z; Li YY
    Bioresour Technol; 2022 Nov; 363():127902. PubMed ID: 36075346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eco-electrogenic treatment of dyestuff wastewater using constructed wetland-microbial fuel cell system with an evaluation of electrode-enriched microbial community structures.
    Rathour R; Patel D; Shaikh S; Desai C
    Bioresour Technol; 2019 Aug; 285():121349. PubMed ID: 31004945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation from biofiltration unit to hybrid constructed wetland-microbial fuel cell: Improvement of wastewater treatment performance and energy recovery.
    Teoh TP; Koo CJ; Ho LN; Wong YS; Lutpi NA; Tan SM; Yap KL; Ong SA
    Environ Sci Pollut Res Int; 2023 May; 30(21):59877-59890. PubMed ID: 37016256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curbing per- and polyfluoroalkyl substances (PFASs): First investigation in a constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Li Q; Man Y; Dai Y; Fu J; Wei T; Tai Y; Zhang X
    Water Res; 2023 Feb; 230():119530. PubMed ID: 36577258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the factors influencing the performance of constructed wetland-microbial fuel cell integration.
    Jingyu H; Miwornunyuie N; Ewusi-Mensah D; Koomson DA
    Water Sci Technol; 2020 Feb; 81(4):631-643. PubMed ID: 32460268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.