These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33895452)

  • 1. Effect of environmental covariable selection in the hydrological modeling using machine learning models to predict daily streamflow.
    Reis GB; da Silva DD; Fernandes Filho EI; Moreira MC; Veloso GV; Fraga MS; Pinheiro SAR
    J Environ Manage; 2021 Jul; 290():112625. PubMed ID: 33895452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning models for streamflow regionalization in a tropical watershed.
    Ferreira RG; Silva DDD; Elesbon AAA; Fernandes-Filho EI; Veloso GV; Fraga MS; Ferreira LB
    J Environ Manage; 2021 Feb; 280():111713. PubMed ID: 33257181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing short-term streamflow prediction in the Haihe River Basin through integrated machine learning with Lasso.
    Song Y; Zhang J
    Water Sci Technol; 2024 May; 89(9):2367-2383. PubMed ID: 38747954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating conceptual and machine learning models to enhance daily-Scale streamflow simulation and assessing climate change impact in the watersheds of the Godavari basin, India.
    Reddy NM; Saravanan S; Paneerselvam B
    Environ Res; 2024 Jun; 250():118403. PubMed ID: 38365058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated remote sensing and machine learning tools for estimating ecological flow regimes in tropical river reaches.
    Sahoo DP; Sahoo B; Tiwari MK; Behera GK
    J Environ Manage; 2022 Nov; 322():116121. PubMed ID: 36070653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Appraisal of data-driven techniques for predicting short-term streamflow in tropical catchment.
    Yeoh KL; Puay HT; Abdullah R; Abd Manan TS
    Water Sci Technol; 2023 Jul; 88(1):75-91. PubMed ID: 37452535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing physically-based hydrological modeling with an ensemble of machine-learning reservoir operation modules under heavy human regulation using easily accessible data.
    Tu T; Li Y; Duan K; Zhao T
    J Environ Manage; 2024 May; 359():121044. PubMed ID: 38714035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating streamflow of the Kızılırmak River, Turkey with single- and multi-station datasets using Random Forests.
    Dogan MS
    Water Sci Technol; 2023 Jun; 87(11):2742-2755. PubMed ID: 37318921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of land use land cover changes on hydrological response of Punpun River basin.
    Ranjan S; Singh V
    Environ Monit Assess; 2023 Sep; 195(9):1137. PubMed ID: 37656325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing hydrological modeling with transformers: a case study for 24-h streamflow prediction.
    Demiray BZ; Sit M; Mermer O; Demir I
    Water Sci Technol; 2024 May; 89(9):2326-2341. PubMed ID: 38747952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super ensemble based streamflow simulation using multi-source remote sensing and ground gauged rainfall data fusion.
    Wegayehu EB; Muluneh FB
    Heliyon; 2023 Jul; 9(7):e17982. PubMed ID: 37449175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors.
    Heddam S; Kisi O
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16702-16724. PubMed ID: 28560629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning models for predicting vegetation conditions in Mahanadi River basin.
    Raj DK; Gopikrishnan T
    Environ Monit Assess; 2023 Nov; 195(12):1401. PubMed ID: 37917222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating daily time series of streamflow using hydrological model calibrated based on satellite observations of river water surface width: Toward real world applications.
    Sun W; Ishidaira H; Bastola S; Yu J
    Environ Res; 2015 May; 139():36-45. PubMed ID: 25680241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models.
    Xu C; Chen X; Zhang L
    J Environ Manage; 2021 Oct; 295():113085. PubMed ID: 34147993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP.
    Huang F; Zhang X
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23896-23908. PubMed ID: 38430443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid model for daily streamflow and phosphorus load prediction.
    Lee D; Shin J; Kim T; Lee S; Kim D; Park Y; Cha Y
    Water Sci Technol; 2023 Aug; 88(4):975-990. PubMed ID: 37651333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance assessment of artificial neural networks and support vector regression models for stream flow predictions.
    Ateeq-Ur-Rauf ; Ghumman AR; Ahmad S; Hashmi HN
    Environ Monit Assess; 2018 Nov; 190(12):704. PubMed ID: 30406854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective.
    Khan M; Khan AU; Khan S; Khan FA
    Water Sci Technol; 2023 Nov; 88(9):2309-2331. PubMed ID: 37966185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.