These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 33895638)

  • 1. Fabrication and characterization of a miniaturized octupole deflection system for the MEMS electron microscope.
    Krysztof M; Białas M; Szyszka P; Grzebyk T; Górecka-Drzazga A
    Ultramicroscopy; 2021 Jun; 225():113288. PubMed ID: 33895638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and optimization of a conical electrostatic objective lens of a low-voltage scanning electron microscope for surface imaging and analysis in ultra-high-vacuum environment.
    Lee JW; Park IY; Ogawa T
    Ultramicroscopy; 2024 Mar; 257():113908. PubMed ID: 38134559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage.
    Robertson S; McClintock A; Jolley K; Zhou H; Davis S; Wu H; Liu C; Doak S; Zhou Z
    J Microsc; 2024 Aug; 295(2):191-198. PubMed ID: 38482774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of General-purpose Dielectric Constant Imaging Unit for SEM and Direct Observation of Samples in Aqueous Solution.
    Ogura T; Okada T; Hatano M; Nakamura M; Agemura T
    Microsc Microanal; 2023 Jun; 29(3):1037-1046. PubMed ID: 37749668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Monochromator with Offset Cylindrical Lenses and Its Application to a Low-Voltage Scanning Electron Microscope.
    Ogawa T; Yamazawa Y; Kawai S; Mouri A; Katane J; Park IY; Takai Y; Agemura T
    Microsc Microanal; 2022 Feb; ():1-13. PubMed ID: 35164889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of vertically aligned carbon nanotube beam trajectory with the help of focusing electrode in the microchannel plate.
    Adhikari BC; Ketan B; Patil R; Choi EH; Park KC
    Sci Rep; 2023 Sep; 13(1):15630. PubMed ID: 37730759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Point field emission electron source with a magnetically focused electron beam.
    Urbański P; Szyszka P; Białas M; Grzebyk T
    Ultramicroscopy; 2024 Apr; 258():113911. PubMed ID: 38181619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MEMS Electrochemical Angular Accelerometer with Silicon-Based Four-Electrode Structure.
    Zhang M; Liu Q; Zhu M; Chen J; Chen D; Wang J; Lu Y
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-aberration ExB deflector optics for scanning electron microscopy.
    Enyama M; Nishi R; Ito H; Yamasaki J
    Microscopy (Oxf); 2023 Oct; 72(5):399-407. PubMed ID: 36629497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specimen plane orientation determination for analysis based on scanning electron microscope: Comparing top-down and side-view approaches.
    Li C; Craig J; Dubovi J
    Microsc Res Tech; 2023 Dec; 86(12):1681-1690. PubMed ID: 37624068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Retrofittable Photoelectron Gun for Low-Voltage Imaging Applications in the Scanning Electron Microscope.
    Quigley F; Downing C; McGuinness C; Jones L
    Microsc Microanal; 2023 Sep; 29(5):1610-1617. PubMed ID: 37490647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-environment Nanocalorimeter with Electrical Contacts for Use in the Scanning Electron Microscope.
    Yi F; Stevanovic A; Osborn WA; Kolmakov A; LaVan DA
    Mater Horiz; 2017 Nov; 4(6):1128-1134. PubMed ID: 29285396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a microfurnace dedicated to in situ scanning electron microscope observation up to 1300 °C. III. In situ high temperature experiments.
    Mendonça J; Lautru J; Brau HP; Nogues D; Candeias A; Podor R
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38753495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkali Vapor MEMS Cells Technology toward High-Vacuum Self-Pumping MEMS Cell for Atomic Spectroscopy.
    Knapkiewicz P
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enhanced visualization image acquisition method for samples with poor conductivity under a conventional scanning electron microscope.
    Pang S; Xia H; Zhang X; Wang Z; Luo J; Li H
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38038635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interlaboratory Study on the Lithographically Produced Scanning Electron Microscope Magnification Standard Prototype.
    Postek MT; Vladar AE; Jones SN; Keery WJ
    J Res Natl Inst Stand Technol; 1993; 98(4):447-467. PubMed ID: 28053483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a microfurnace dedicated to in situ scanning electron microscope observation up to 1300 °C. I. Concept, fabrication, and validation.
    Mendonça J; Brau HP; Nogues D; Candeias A; Podor R
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38753493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Orientation Adjustment Inside Scanning Electron Microscope: Side View Approach.
    Li C; Craig J
    Microsc Microanal; 2023 Jul; 29(Supplement_1):174-175. PubMed ID: 37613431
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of Electrode-based BackScatter Electron Detector for In Situ SEM.
    Moldovan G; Schumann F; Joachimi W; Willinger M
    Microsc Microanal; 2023 Jul; 29(Supplement_1):2083-2084. PubMed ID: 37613007
    [No Abstract]   [Full Text] [Related]  

  • 20. Limits of Resolutions in the Scanning Electron Microscope.
    Vladár AE; Arat KT
    Microsc Microanal; 2023 Jul; 29(Supplement_1):463-464. PubMed ID: 37613029
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.