These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 33895671)

  • 1. Methane production from syngas using a trickle-bed reactor setup.
    Aryal N; Odde M; Bøgeholdt Petersen C; Ditlev Mørck Ottosen L; Vedel Wegener Kofoed M
    Bioresour Technol; 2021 Aug; 333():125183. PubMed ID: 33895671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel two-stage process for biological conversion of syngas to biomethane.
    Andreides D; Bautista Quispe JI; Bartackova J; Pokorna D; Zabranska J
    Bioresour Technol; 2021 May; 327():124811. PubMed ID: 33592492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogas upgrading in a pilot-scale trickle bed reactor - Long-term biological methanation under real application conditions.
    Feickert Fenske C; Kirzeder F; Strübing D; Koch K
    Bioresour Technol; 2023 May; 376():128868. PubMed ID: 36907226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources.
    Cheng G; Gabler F; Pizzul L; Olsson H; Nordberg Å; Schnürer A
    Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5317-5333. PubMed ID: 35799068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple kinetic analysis of syngas during steam hydrogasification of biomass using a novel inverted batch reactor with instant high pressure feeding.
    Fan X; Liu Z; Norbeck JM; Park CS
    Bioresour Technol; 2016 Jan; 200():731-7. PubMed ID: 26562689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary gas flow experiments identify improved gas flow conditions in a pilot-scale trickle bed reactor for H
    Feickert Fenske C; Md Y; Strübing D; Koch K
    Bioresour Technol; 2023 Mar; 371():128648. PubMed ID: 36681350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading.
    Aryal N; Zhang Y; Bajracharya S; Pant D; Chen X
    Chemosphere; 2022 Mar; 291(Pt 1):132843. PubMed ID: 34767847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced in-situ biomethanation of food waste by sequential inoculum acclimation: Energy efficiency and carbon savings analysis.
    Okoro-Shekwaga CK; Ross AB; Camargo-Valero MA
    Waste Manag; 2021 Jul; 130():12-22. PubMed ID: 34044360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste-gasification efficiency of a two-stage fluidized-bed gasification system.
    Liu ZS; Lin CL; Chang TJ; Weng WC
    Waste Manag; 2016 Feb; 48():250-256. PubMed ID: 26698684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastic-containing food waste conversion to biomethane, syngas, and biochar via anaerobic digestion and gasification: Focusing on reactor performance, microbial community analysis, and energy balance assessment.
    Zhang L; Yao D; Tsui TH; Loh KC; Wang CH; Dai Y; Tong YW
    J Environ Manage; 2022 Mar; 306():114471. PubMed ID: 35026716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge.
    Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA
    Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase.
    Sancho Navarro S; Cimpoia R; Bruant G; Guiot SR
    Front Microbiol; 2016; 7():1188. PubMed ID: 27536280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.
    Strübing D; Huber B; Lebuhn M; Drewes JE; Koch K
    Bioresour Technol; 2017 Dec; 245(Pt A):1176-1183. PubMed ID: 28863994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale study of biomethanation in biological trickle bed reactors converting impure CO
    Jønson BD; Tsapekos P; Tahir Ashraf M; Jeppesen M; Ejbye Schmidt J; Bastidas-Oyanedel JR
    Bioresour Technol; 2022 Dec; 365():128160. PubMed ID: 36273766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.
    Díaz I; Pérez C; Alfaro N; Fdz-Polanco F
    Bioresour Technol; 2015 Jun; 185():246-53. PubMed ID: 25770473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of BioSNG from waste derived syngas: Pilot plant operation and preliminary assessment.
    Materazzi M; Taylor R; Cozens P; Manson-Whitton C
    Waste Manag; 2018 Sep; 79():752-762. PubMed ID: 30343808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomethanation of syngas at high CO concentration in a continuous mode.
    Li Y; Liu Y; Wang X; Luo S; Su D; Jiang H; Zhou H; Pan J; Feng L
    Bioresour Technol; 2022 Feb; 346():126407. PubMed ID: 34826564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.
    Ullrich T; Lindner J; Bär K; Mörs F; Graf F; Lemmer A
    Bioresour Technol; 2018 Jan; 247():7-13. PubMed ID: 28942208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.