BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 33895950)

  • 1. A deep neural network-based approach for prediction of mutagenicity of compounds.
    Kumar R; Khan FU; Sharma A; Siddiqui MH; Aziz IB; Kamal MA; Ashraf GM; Alghamdi BS; Uddin MS
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):47641-47650. PubMed ID: 33895950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing machine-learning models for mutagenicity prediction through better feature selection.
    Shinada NK; Koyama N; Ikemori M; Nishioka T; Hitaoka S; Hakura A; Asakura S; Matsuoka Y; Palaniappan SK
    Mutagenesis; 2022 Oct; 37(3-4):191-202. PubMed ID: 35554560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning - Predicting Ames mutagenicity of small molecules.
    Chu CSM; Simpson JD; O'Neill PM; Berry NG
    J Mol Graph Model; 2021 Dec; 109():108011. PubMed ID: 34555723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of support vector machine, artificial neural network and bayesian classifier for mutagenicity prediction.
    Sharma A; Kumar R; Varadwaj PK; Ahmad A; Ashraf GM
    Interdiscip Sci; 2011 Sep; 3(3):232-9. PubMed ID: 21956745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction.
    Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S
    Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of machine learning and deep learning models for toxicity prediction.
    Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of postoperative complications after oesophagectomy using machine-learning methods.
    Jung JO; Pisula JI; Bozek K; Popp F; Fuchs HF; Schröder W; Bruns CJ; Schmidt T
    Br J Surg; 2023 Sep; 110(10):1361-1366. PubMed ID: 37343072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleft prediction before birth using deep neural network.
    Shafi N; Bukhari F; Iqbal W; Almustafa KM; Asif M; Nawaz Z
    Health Informatics J; 2020 Dec; 26(4):2568-2585. PubMed ID: 32283987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPred-CNN: Ames mutagenicity prediction model based on convolutional neural networks.
    Tran TTV; Tayara H; Chong KT
    Comput Biol Med; 2024 Jun; 176():108560. PubMed ID: 38754218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation.
    Afzali MH; Sunderland M; Stewart S; Masse B; Seguin J; Newton N; Teesson M; Conrod P
    Addiction; 2019 Apr; 114(4):662-671. PubMed ID: 30461117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database.
    Chen-Ying Hung ; Wei-Chen Chen ; Po-Tsun Lai ; Ching-Heng Lin ; Chi-Chun Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3110-3113. PubMed ID: 29060556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles.
    Elsisi M; Tran MQ
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Detection of Hypotension Using a Multivariate Machine Learning Approach.
    Rashedi N; Sun Y; Vaze V; Shah P; Halter R; Elliott JT; Paradis NA
    Mil Med; 2021 Jan; 186(Suppl 1):440-444. PubMed ID: 33499451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personal Health Information Inference Using Machine Learning on RNA Expression Data from Patients With Cancer: Algorithm Validation Study.
    Kweon S; Lee JH; Lee Y; Park YR
    J Med Internet Res; 2020 Aug; 22(8):e18387. PubMed ID: 32773372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MutagenPred-GCNNs: A Graph Convolutional Neural Network-Based Classification Model for Mutagenicity Prediction with Data-Driven Molecular Fingerprints.
    Li S; Zhang L; Feng H; Meng J; Xie D; Yi L; Arkin IT; Liu H
    Interdiscip Sci; 2021 Mar; 13(1):25-33. PubMed ID: 33506363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.
    Olisah CC; Smith L; Smith M
    Comput Methods Programs Biomed; 2022 Jun; 220():106773. PubMed ID: 35429810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.