These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 33896006)

  • 1. Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the Pseudomonas fluorescens copper chaperone CopC.
    Ipsen JØ; Hernández-Rollán C; Muderspach SJ; Brander S; Bertelsen AB; Jensen PE; Nørholm MHH; Lo Leggio L; Johansen KS
    FEBS Lett; 2021 Jun; 595(12):1708-1720. PubMed ID: 33896006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace.
    Brander S; Horvath I; Ipsen JØ; Peciulyte A; Olsson L; Hernández-Rollán C; Nørholm MHH; Mossin S; Leggio LL; Probst C; Thiele DJ; Johansen KS
    Sci Rep; 2020 Oct; 10(1):16369. PubMed ID: 33004835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the CopC protein from Pseudomonas fluorescens reveals amended classifications for the CopC protein family.
    Udagedara SR; Wijekoon CJK; Xiao Z; Wedd AG; Maher MJ
    J Inorg Biochem; 2019 Jun; 195():194-200. PubMed ID: 30981030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneity in the Histidine-brace Copper Coordination Sphere in Auxiliary Activity Family 10 (AA10) Lytic Polysaccharide Monooxygenases.
    Chaplin AK; Wilson MT; Hough MA; Svistunenko DA; Hemsworth GR; Walton PH; Vijgenboom E; Worrall JAR
    J Biol Chem; 2016 Jun; 291(24):12838-12850. PubMed ID: 27129229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCu
    Fisher OS; Sendzik MR; Ross MO; Lawton TJ; Hoffman BM; Rosenzweig AC
    J Biol Chem; 2019 Nov; 294(44):16351-16363. PubMed ID: 31527086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CopC protein from Pseudomonas fluorescens SBW25 features a conserved novel high-affinity Cu(II) binding site.
    Wijekoon CJ; Young TR; Wedd AG; Xiao Z
    Inorg Chem; 2015 Mar; 54(6):2950-9. PubMed ID: 25710712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A designed Copper Histidine-brace enzyme for oxidative depolymerization of polysaccharides as a model of lytic polysaccharide monooxygenase.
    Liu Y; Harnden KA; Van Stappen C; Dikanov SA; Lu Y
    Proc Natl Acad Sci U S A; 2023 Oct; 120(43):e2308286120. PubMed ID: 37844252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface.
    Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ
    Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity.
    Alwan KB; Welch EF; Blackburn NJ
    Biochemistry; 2019 Nov; 58(44):4436-4446. PubMed ID: 31626532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites.
    Arnesano F; Banci L; Bertini I; Mangani S; Thompsett AR
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3814-9. PubMed ID: 12651950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases.
    Frandsen KEH; Tovborg M; Jørgensen CI; Spodsberg N; Rosso MN; Hemsworth GR; Garman EF; Grime GW; Poulsen JN; Batth TS; Miyauchi S; Lipzen A; Daum C; Grigoriev IV; Johansen KS; Henrissat B; Berrin JG; Lo Leggio L
    J Biol Chem; 2019 Nov; 294(45):17117-17130. PubMed ID: 31471321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multinuclear copper(I) cluster forms the dimerization interface in copper-loaded human copper chaperone for superoxide dismutase.
    Stasser JP; Siluvai GS; Barry AN; Blackburn NJ
    Biochemistry; 2007 Oct; 46(42):11845-56. PubMed ID: 17902702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenocysteine positional variants reveal contributions to copper binding from cysteine residues in domains 2 and 3 of human copper chaperone for superoxide dismutase.
    Barry AN; Clark KM; Otoikhian A; van der Donk WA; Blackburn NJ
    Biochemistry; 2008 Dec; 47(49):13074-83. PubMed ID: 19007184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling a 'histidine brace' motif in mononuclear copper monooxygenases.
    Fukatsu A; Morimoto Y; Sugimoto H; Itoh S
    Chem Commun (Camb); 2020 May; 56(38):5123-5126. PubMed ID: 32297615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation and oxidative catalytic inactivation of thermolysin by copper.Cys-Gly-His-Lys.
    Gokhale NH; Bradford S; Cowan JA
    J Biol Inorg Chem; 2007 Sep; 12(7):981-7. PubMed ID: 17618468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tetranuclear Cu(I) cluster in the metallochaperone protein CopZ.
    Hearnshaw S; West C; Singleton C; Zhou L; Kihlken MA; Strange RW; Le Brun NE; Hemmings AM
    Biochemistry; 2009 Oct; 48(40):9324-6. PubMed ID: 19746989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a bicupin protein HutD involved in histidine utilization in Pseudomonas.
    Gerth ML; Liu Y; Jiao W; Zhang XX; Baker EN; Lott JS; Rainey PB; Johnston JM
    Proteins; 2017 Aug; 85(8):1580-1588. PubMed ID: 28383128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues.
    Rodriguez-Granillo A; Wittung-Stafshede P
    J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of copper in folding and stability of cupredoxin-like copper-carrier protein CopC.
    Hussain F; Sedlak E; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Nov; 467(1):58-66. PubMed ID: 17889826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of copper from aqueous solutions by rhizofiltration using genetically modified hairy roots expressing a bacterial Cu-binding protein.
    Pérez-Palacios P; Agostini E; Ibáñez SG; Talano MA; Rodríguez-Llorente ID; Caviedes MA; Pajuelo E
    Environ Technol; 2017 Nov; 38(22):2877-2888. PubMed ID: 28076691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.