These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33896082)

  • 1. Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change.
    Singer MC; Parmesan C
    Glob Chang Biol; 2021 Aug; 27(15):3505-3518. PubMed ID: 33896082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth.
    Lancaster LT
    Nat Ecol Evol; 2020 Jul; 4(7):963-969. PubMed ID: 32424277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change.
    Bridle JR; Buckley J; Bodsworth EJ; Thomas CD
    Proc Biol Sci; 2014 Feb; 281(1776):20131800. PubMed ID: 24335979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The response of two butterfly species to climatic variation at the edge of their range and the implications for poleward range shifts.
    Hellmann JJ; Pelini SL; Prior KM; Dzurisin JD
    Oecologia; 2008 Oct; 157(4):583-92. PubMed ID: 18648857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate-driven variation in biotic interactions provides a narrow and variable window of opportunity for an insect herbivore at its ecological margin.
    Stewart JE; Maclean IMD; Trujillo G; Bridle J; Wilson RJ
    Philos Trans R Soc Lond B Biol Sci; 2022 Apr; 377(1848):20210021. PubMed ID: 35184597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change.
    Buckley J; Butlin RK; Bridle JR
    Mol Ecol; 2012 Jan; 21(2):267-80. PubMed ID: 22118243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change.
    Pelini SL; Dzurisin JD; Prior KM; Williams CM; Marsico TD; Sinclair BJ; Hellmann JJ
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):11160-5. PubMed ID: 19549861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species' traits as predictors of range shifts under contemporary climate change: A review and meta-analysis.
    MacLean SA; Beissinger SR
    Glob Chang Biol; 2017 Oct; 23(10):4094-4105. PubMed ID: 28449200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity, rank preference, and the colonization of a non-native host plant by the Melissa blue butterfly.
    Forister ML; Scholl CF; Jahner JP; Wilson JS; Fordyce JA; Gompert Z; Narala DR; Alex Buerkle C; Nice CC
    Oecologia; 2013 May; 172(1):177-88. PubMed ID: 23053234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unravelling the role of host plant expansion in the diversification of a Neotropical butterfly genus.
    McClure M; Elias M
    BMC Evol Biol; 2016 Jun; 16(1):128. PubMed ID: 27306900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat associations of thermophilous butterflies are reduced despite climatic warming.
    Oliver TH; Thomas CD; Hill JK; Brereton T; Roy DB
    Glob Chang Biol; 2012 Sep; 18(9):2720-9. PubMed ID: 24501051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change hastens population extinctions.
    McLaughlin JF; Hellmann JJ; Boggs CL; Ehrlich PR
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6070-4. PubMed ID: 11972020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins.
    Coristine LE; Kerr JT
    Ecol Evol; 2015 Nov; 5(22):5162-5176. PubMed ID: 30151121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do species' traits predict recent shifts at expanding range edges?
    Angert AL; Crozier LG; Rissler LJ; Gilman SE; Tewksbury JJ; Chunco AJ
    Ecol Lett; 2011 Jul; 14(7):677-89. PubMed ID: 21535340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between diet breadth and geographic range size in the butterfly subfamily Nymphalinae--a study of global scale.
    Slove J; Janz N
    PLoS One; 2011 Jan; 6(1):e16057. PubMed ID: 21246054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.
    Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D
    J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonadaptive radiation: Pervasive diet specialization by drift in scale insects?
    Hardy NB; Peterson DA; Normark BB
    Evolution; 2016 Oct; 70(10):2421-2428. PubMed ID: 27507211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Past, current, and potential future distributions of unique genetic diversity in a cold-adapted mountain butterfly.
    Minter M; Dasmahapatra KK; Thomas CD; Morecroft MD; Tonhasca A; Schmitt T; Siozios S; Hill JK
    Ecol Evol; 2020 Oct; 10(20):11155-11168. PubMed ID: 33144956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.