BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33896166)

  • 1. Three-Dimensional Printing of Self-Assembled Dipeptides.
    Yang J; Chen M; Lee H; Xu Z; Zhou Z; Feng SP; Kim JT
    ACS Appl Mater Interfaces; 2021 May; 13(17):20573-20580. PubMed ID: 33896166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing of Dipeptides with Spatioselective Programming of Crystallinity for Multilevel Anticounterfeiting.
    Yang J; Huan X; Liu Y; Lee H; Chen M; Hu S; Cao S; Kim JT
    Nano Lett; 2022 Oct; 22(19):7776-7783. PubMed ID: 36173250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of azide containing dipeptides.
    Yuran S; Razvag Y; Das P; Reches M
    J Pept Sci; 2014 Jul; 20(7):479-86. PubMed ID: 24889029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diphenylalanine-Based Microribbons for Piezoelectric Applications via Inkjet Printing.
    Safaryan S; Slabov V; Kopyl S; Romanyuk K; Bdikin I; Vasilev S; Zelenovskiy P; Shur VY; Uslamin EA; Pidko EA; Vinogradov AV; Kholkin AL
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10543-10551. PubMed ID: 29498259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.
    Chen C; Liu K; Li J; Yan X
    Adv Colloid Interface Sci; 2015 Nov; 225():177-93. PubMed ID: 26365127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Building block 3D printing based on molecular self-assembly monolayer with self-healing properties.
    Hamoudi H; Berdiyorov GR; Zekri A; Tong Y; Mansour S; Esaulov VA; Youcef-Toumi K
    Sci Rep; 2022 Apr; 12(1):6806. PubMed ID: 35474113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoactive Bioorganic Diphenylalanine Films: Mechanism of Phase Formation.
    Alikin D; Yuzhakov V; Semiletova L; Slabov V; Kuznetsov D; Gimadeeva L; Shur V; Kopyl S; Kholkin A
    ACS Biomater Sci Eng; 2023 Dec; 9(12):6715-6723. PubMed ID: 38032859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface self-assembly of N-fluorenyl-9-methoxycarbonyl diphenylalanine on silica wafer.
    Liu Y; Xu XD; Chen JX; Cheng H; Zhang XZ; Zhuo RX
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):192-7. PubMed ID: 21612897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity.
    Basavalingappa V; Bera S; Xue B; O'Donnell J; Guerin S; Cazade PA; Yuan H; Haq EU; Silien C; Tao K; Shimon LJW; Tofail SAM; Thompson D; Kolusheva S; Yang R; Cao Y; Gazit E
    ACS Nano; 2020 Jun; 14(6):7025-7037. PubMed ID: 32441511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting.
    Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cation-based approach to morphological diversity of diphenylalanine dipeptide structures.
    Erdoğan H
    Soft Matter; 2021 May; 17(20):5221-5230. PubMed ID: 33949599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Assembly between Fmoc Diphenylalanine and Diphenylalanine within a 3D Fibrous Viscous Network Confers Atypical Curvature and Branching.
    Chakraborty P; Tang Y; Guterman T; Arnon ZA; Yao Y; Wei G; Gazit E
    Angew Chem Int Ed Engl; 2020 Dec; 59(52):23731-23739. PubMed ID: 32894630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures.
    Jalili AR; Satalov A; Nazari S; Rahmat Suryanto BH; Sun J; Ghasemian MB; Mayyas M; Kandjani AE; Sabri YM; Mayes E; Bhargava SK; Araki J; Zakri C; Poulin P; Esrafilzadeh D; Amal R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28627-28638. PubMed ID: 34110785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of ordered biomolecular structures by the self-assembly of short peptides.
    Yuran S; Reches M
    J Vis Exp; 2013 Nov; (81):e50946. PubMed ID: 24301009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.
    Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional 3D printing: Approaches and bioapplications.
    Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A
    Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.