These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33896186)

  • 1. Vortex Interactions and Clustering in Thin Superconductors.
    Córdoba-Camacho WY; Vagov A; Shanenko AA; Aguiar JA; Vasenko AS; Stolyarov VS
    J Phys Chem Lett; 2021 May; 12(17):4172-4179. PubMed ID: 33896186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crossover from type I to type II regime of mesoscopic superconductors of the first group.
    Cadorim LR; Calsolari TO; Zadorosny R; Sardella E
    J Phys Condens Matter; 2020 Feb; 32(9):095304. PubMed ID: 31578005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of superconducting vortex clusters in S/F hybrids.
    Di Giorgio C; Bobba F; Cucolo AM; Scarfato A; Moore SA; Karapetrov G; D'Agostino D; Novosad V; Yefremenko V; Iavarone M
    Sci Rep; 2016 Dec; 6():38557. PubMed ID: 27934898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant vortex states in type I superconductors simulated by Ginzburg-Landau equations.
    Palonen H; Jäykkä J; Paturi P
    J Phys Condens Matter; 2013 Sep; 25(38):385702. PubMed ID: 23995237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous pattern formation in superconducting films.
    Córdoba-Camacho WY; da Silva RM; Shanenko AA; Vagov A; Vasenko AS; Lvov BG; Albino Aguiar J
    J Phys Condens Matter; 2020 Feb; 32(7):075403. PubMed ID: 31675734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Type-II/Type-I Crossover in Dirty Ferromagnetic Superconductors.
    Marychev PM; Chen Y
    J Phys Chem Lett; 2023 Dec; 14(51):11573-11579. PubMed ID: 38099821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Generation of Quantized Vortex-Antivortex Pairs in a Superconducting Condensate.
    Ge JY; Gladilin VN; Tempere J; Devreese J; Moshchalkov VV
    Nano Lett; 2017 Aug; 17(8):5003-5007. PubMed ID: 28693319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales.
    Curran PJ; Desoky WM; Milosević MV; Chaves A; Laloë JB; Moodera JS; Bending SJ
    Sci Rep; 2015 Oct; 5():15569. PubMed ID: 26492969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steering of Vortices by Magnetic Field Tilting in Open Superconductor Nanotubes.
    Bogush I; Fomin VM; Dobrovolskiy OV
    Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of vortex dynamics in type-II superconductors in oscillating magnetic field using time-dependent Ginzburg-Landau equations.
    Jafri HM; Ma X; Zhao C; Liang D; Huang H; Liu Z; Chen LQ
    J Phys Condens Matter; 2017 Dec; 29(50):505701. PubMed ID: 28925380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Noninteger Flux Quantum of Vortices in Superconducting Strips.
    Zhang AL; Gladilin V; Van de Vondel J; Moshchalkov VV; Ge JY
    Nano Lett; 2022 Sep; 22(17):7151-7157. PubMed ID: 35980177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent Ginzburg-Landau treatment of rf magnetic vortices in superconductors: Vortex semiloops in a spatially nonuniform magnetic field.
    Oripov B; Anlage SM
    Phys Rev E; 2020 Mar; 101(3-1):033306. PubMed ID: 32289922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between Superconductor - Ferromagnetic stray magnetic fields in YBa
    Rouco V; Córdoba R; De Teresa JM; Rodríguez LA; Navau C; Del-Valle N; Via G; Sánchez A; Monton C; Kronast F; Obradors X; Puig T; Palau A
    Sci Rep; 2017 Jul; 7(1):5663. PubMed ID: 28720833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting, Tracking, and Visualizing Magnetic Flux Vortices in 3D Complex-Valued Superconductor Simulation Data.
    Guo H; Phillips CL; Peterka T; Karpeyev D; Glatz A
    IEEE Trans Vis Comput Graph; 2016 Jan; 22(1):827-36. PubMed ID: 26529730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic field-induced dissipation-free state in superconducting nanostructures.
    Córdoba R; Baturina TI; Sesé J; Mironov AY; De Teresa JM; Ibarra MR; Nasimov DA; Gutakovskii AK; Latyshev AV; Guillamón I; Suderow H; Vieira S; Baklanov MR; Palacios JJ; Vinokur VM
    Nat Commun; 2013; 4():1437. PubMed ID: 23385582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes and Consequences of Ordering and Dynamic Phases of Confined Vortex Rows in Superconducting Nanostripes.
    McNaughton B; Pinto N; Perali A; Milošević MV
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type H superconductors and the vortex lattice.
    Abrikosov AA
    Chemphyschem; 2004 Jul; 5(7):925-9. PubMed ID: 15298378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-4e Superconductivity from Nematic Superconductors in Two and Three Dimensions.
    Jian SK; Huang Y; Yao H
    Phys Rev Lett; 2021 Nov; 127(22):227001. PubMed ID: 34889620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vortex states of a superconducting film from a magnetic dot array.
    Priour DJ; Fertig HA
    Phys Rev Lett; 2004 Jul; 93(5):057003. PubMed ID: 15323726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures.
    Latimer ML; Berdiyorov GR; Xiao ZL; Peeters FM; Kwok WK
    Phys Rev Lett; 2013 Aug; 111(6):067001. PubMed ID: 23971602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.