These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
3. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants. Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150 [TBL] [Abstract][Full Text] [Related]
5. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255 [TBL] [Abstract][Full Text] [Related]
6. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742 [TBL] [Abstract][Full Text] [Related]
7. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Zhao Z; Shang P; Sage F; Geijsen N Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464 [TBL] [Abstract][Full Text] [Related]
9. Precision genome editing in the CRISPR era. Salsman J; Dellaire G Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771 [TBL] [Abstract][Full Text] [Related]
10. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing. Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475 [TBL] [Abstract][Full Text] [Related]
11. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies. Liu Y; Cottle WT; Ha T Trends Genet; 2023 Jul; 39(7):560-574. PubMed ID: 36967246 [TBL] [Abstract][Full Text] [Related]
12. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
14. Gene Editing With TALEN and CRISPR/Cas in Rice. Bi H; Yang B Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502 [TBL] [Abstract][Full Text] [Related]
15. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks. van de Kooij B; Kruswick A; van Attikum H; Yaffe MB Nat Commun; 2022 Sep; 13(1):5295. PubMed ID: 36075911 [TBL] [Abstract][Full Text] [Related]
16. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939 [TBL] [Abstract][Full Text] [Related]
17. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829 [TBL] [Abstract][Full Text] [Related]
18. Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms. Chen Z; Hu J; Dai J; Zhou C; Hua Y; Hua X; Zhao Y Microbiol Res; 2024 Jul; 284():127713. PubMed ID: 38608339 [TBL] [Abstract][Full Text] [Related]
19. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Feng Y; Liu S; Chen R; Xie A J Zhejiang Univ Sci B; 2021 Jan; 22(1):73-86. PubMed ID: 33448189 [TBL] [Abstract][Full Text] [Related]
20. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. Cui Y; Dong H; Ma Y; Zhang D ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]