BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 33896583)

  • 1. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
    Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S
    G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair.
    Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F
    DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR.
    Zhao Z; Shang P; Sage F; Geijsen N
    Nucleic Acids Res; 2022 Jun; 50(11):e62. PubMed ID: 35212386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining.
    Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY
    Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target residence of Cas9-sgRNA influences DNA double-strand break repair pathway choices in CRISPR/Cas9 genome editing.
    Liu SC; Feng YL; Sun XN; Chen RD; Liu Q; Xiao JJ; Zhang JN; Huang ZC; Xiang JF; Chen GQ; Yang Y; Lou C; Li HD; Cai Z; Xu SM; Lin H; Xie AY
    Genome Biol; 2022 Aug; 23(1):165. PubMed ID: 35915475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies.
    Liu Y; Cottle WT; Ha T
    Trends Genet; 2023 Jul; 39(7):560-574. PubMed ID: 36967246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9 Technology in Translational Biomedicine.
    Leonova EI; Gainetdinov RR
    Cell Physiol Biochem; 2020 Apr; 54(3):354-370. PubMed ID: 32298553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining.
    Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL
    Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks.
    van de Kooij B; Kruswick A; van Attikum H; Yaffe MB
    Nat Commun; 2022 Sep; 13(1):5295. PubMed ID: 36075911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks.
    Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B
    Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise CRISPR/Cpf1 genome editing system in the Deinococcus radiodurans with superior DNA repair mechanisms.
    Chen Z; Hu J; Dai J; Zhou C; Hua Y; Hua X; Zhao Y
    Microbiol Res; 2024 Jul; 284():127713. PubMed ID: 38608339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.
    Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I
    Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos.
    He MD; Zhang FH; Wang HL; Wang HP; Zhu ZY; Sun YH
    Mutat Res; 2015 Oct; 780():86-96. PubMed ID: 26318124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.