These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33897402)

  • 1. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance.
    Shi K; Song A; Li Y; Li H; Chen D; Zhu L
    Front Neurorobot; 2021; 15():664062. PubMed ID: 33897402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training.
    Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H
    Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning-Based Repetitive Control of a Bowden-Cable-Actuated Exoskeleton with Frictional Hysteresis.
    Shi Y; Guo M; Hui C; Li S; Ji X; Yang Y; Luo X; Xia D
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human movement training with a cable driven ARm EXoskeleton (CAREX).
    Mao Y; Jin X; Gera Dutta G; Scholz JP; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):84-92. PubMed ID: 24919202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot.
    Zhang Q; Sun D; Qian W; Xiao X; Guo Z
    Front Neurorobot; 2020; 14():13. PubMed ID: 32161531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serious Games Strategies With Cable-Driven Robots for Bimanual Rehabilitation: A Randomized Controlled Trial With Post-Stroke Patients.
    Alves T; Gonçalves RS; Carbone G
    Front Robot AI; 2022; 9():739088. PubMed ID: 35252362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle-inspired bi-planar cable routing: a novel framework for designing cable driven lower limb rehabilitation exoskeletons (C-LREX).
    Prasad R; El-Rich M; Awad MI; Agrawal SK; Khalaf K
    Sci Rep; 2024 Mar; 14(1):5158. PubMed ID: 38431744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards Human-like Walking with Biomechanical and Neuromuscular Control Features: Personalized Attachment Point Optimization Method of Cable-Driven Exoskeleton.
    Chen Y; Yu W; Benali A; Lu D; Kok SY; Wang R
    Front Aging Neurosci; 2024; 16():1327397. PubMed ID: 38371400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and control of a bedside cable-driven lower-limb rehabilitation robot for bedridden individuals.
    Wang D; Li J; Jian Z; Su H; Wang H; Fang F
    Front Bioeng Biotechnol; 2023; 11():1321905. PubMed ID: 38076420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Active Cable-Driven, Force-Controlled Robotic System for Walking Rehabilitation.
    Fang J; Haldimann M; Marchal-Crespo L; Hunt KJ
    Front Neurorobot; 2021; 15():651177. PubMed ID: 34093158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and control of a 3-DOF rehabilitation robot for forearm and wrist.
    Lincong Luo ; Liang Peng ; Zengguang Hou ; Weiqun Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4127-4130. PubMed ID: 29060805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usability Assessment of a Cable-Driven Exoskeletal Robot for Hand Rehabilitation.
    Tsai YL; Huang JJ; Pu SW; Chen HP; Hsu SC; Chang JY; Pei YC
    Front Neurorobot; 2019; 13():3. PubMed ID: 30814945
    [No Abstract]   [Full Text] [Related]  

  • 13. Cable-Driven Parallel Robot with Reconfigurable End Effector Controlled with a Compliant Actuator.
    Rodriguez-Barroso A; Saltaren R; Portilla GA; Cely JS; Carpio M
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Framework for Determining the Performance and Requirements of Cable-Driven Mobile Lower Limb Rehabilitation Exoskeletons.
    Prasad R; El-Rich M; Awad MI; Hussain I; Jelinek HF; Huzaifa U; Khalaf K
    Front Bioeng Biotechnol; 2022; 10():920462. PubMed ID: 35795162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton.
    Li X; Liu J; Li W; Huang Y; Zhan G
    Appl Bionics Biomech; 2022; 2022():5552166. PubMed ID: 35937097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot.
    Shi Y; Guo M; Zhong H; Ji X; Xia D; Luo X; Yang Y
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous mode adaptation for cable-driven rehabilitation robot using reinforcement learning.
    Yang R; Zheng J; Song R
    Front Neurorobot; 2022; 16():1068706. PubMed ID: 36620486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design on the Bowden Cable-Driven Upper Limb Soft Exoskeleton.
    Wei W; Qu Z; Wang W; Zhang P; Hao F
    Appl Bionics Biomech; 2018; 2018():1925694. PubMed ID: 30116293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism.
    Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J
    Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on a New Rehabilitation Robot for Balance Disorders.
    Wu J; Liu Y; Zhao J; Jia Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.