These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33897402)

  • 21. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation.
    Ahmed T; Islam MR; Brahmi B; Rahman MH
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential Energy Distribution of Redundant Cable-Driven Robot Applied to Compliant Grippers: Method and Computational Analysis.
    Rodriguez-Barroso A; Saltaren R; Portilla GA; Cely JS; Yakrangi O
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Clamping Force Estimation Method Based on a Joint Torque Disturbance Observer Using PSO-BPNN for Cable-Driven Surgical Robot End-Effectors.
    Wang Z; Wang D; Chen B; Yu L; Qian J; Zi B
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31805636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechatronics design and testing of a cable-driven upper limb rehabilitation exoskeleton with variable stiffness.
    Li Z; Li W; Chen WH; Zhang J; Wang J; Fang Z; Yang G
    Rev Sci Instrum; 2021 Feb; 92(2):024101. PubMed ID: 33648137
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cable-driven distal end-effector mechanism for single-port robotic surgery.
    Wang Y; Cao Q; Zhu X; Wang P
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):301-309. PubMed ID: 33389605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a wearable cable-driven upper limb exoskeleton based on epicyclic gear trains structure.
    Xiao F; Gao Y; Wang Y; Zhu Y; Zhao J
    Technol Health Care; 2017 Jul; 25(S1):3-11. PubMed ID: 28582886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters.
    Chen W; Li Z; Cui X; Zhang J; Bai S
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31618848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and Evaluation of an Actuated Exoskeleton for Examining Motor Control in Stroke Thumb.
    Wang F; Jones CL; Shastri M; Qian K; Kamper DG; Sarkar N
    Adv Robot; 2016; 30(3):165-177. PubMed ID: 27672232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and Development of the Cable Actuated Finger Exoskeleton for Hand Rehabilitation Following Stroke.
    Jones CL; Wang F; Morrison R; Sarkar N; Kamper DG
    IEEE ASME Trans Mechatron; 2014 Feb; 19(1):131-140. PubMed ID: 30880898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconfiguration strategy for fully actuated translational cable-suspended parallel robots.
    Bettega J; Boschetti G; Piva G; Richiedei D; Trevisani A
    Front Robot AI; 2023; 10():1112856. PubMed ID: 36814448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indirect Force Control of a Cable-Driven Parallel Robot: Tension Estimation using Artificial Neural Network trained by Force Sensor Measurements.
    Piao J; Kim ES; Choi H; Moon CB; Choi E; Park JO; Kim CS
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31159461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal Design of Cable-Driven Manipulators Using Particle Swarm Optimization.
    Bryson JT; Jin X; Agrawal SK
    J Mech Robot; 2016 Aug; 8(4):0410031-410038. PubMed ID: 27222694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper.
    Zhu J; Hu H; Zhao W; Yang J; Ouyang Q
    Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bi-Planar Trajectory Tracking with a Novel 3DOF Cable Driven Lower Limb Rehabilitation Exoskeleton (C-LREX).
    Prasad R; El-Rich M; Awad MI; Agrawal SK; Khalaf K
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Safety Evaluation and Experimental Study of a New Bionic Muscle Cable-Driven Lower Limb Rehabilitation Robot.
    Wang YL; Wang KY; Wang KC; Mo ZJ
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.
    Case JC; White EL; SunSpiral V; Kramer-Bottiglio R
    Soft Robot; 2018 Feb; 5(1):109-118. PubMed ID: 29412083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Tension Sensor Array for Cable-Driven Surgical Robots.
    Zhou Z; Yang J; Runciman M; Avery J; Sun Z; Mylonas G
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794010
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Research progress on compliant characteristics of lower extremity exoskeleton robots].
    Si G; Huang W; Li G; Xu F; Chu M; Liu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Feb; 36(1):157-163. PubMed ID: 30887791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
    Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J
    Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.