These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 33897451)

  • 1. Characterization of Glycoside Hydrolase Families 13 and 31 Reveals Expansion and Diversification of α-Amylase Genes in the Phlebotomine
    da Costa-Latgé SG; Bates P; Dillon R; Genta FA
    Front Physiol; 2021; 12():635633. PubMed ID: 33897451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of α-Glucosidases From
    da Costa SG; Bates P; Dillon R; Genta FA
    Front Physiol; 2019; 10():248. PubMed ID: 31024327
    [No Abstract]   [Full Text] [Related]  

  • 3. Galactosamine reduces sandfly gut protease activity through TOR downregulation and increases Lutzomyia susceptibility to Leishmania.
    Silva Fernandes TL; Pereira-Filho AA; Nepomuneno DB; de Freitas Milagres T; Ferreira Malta LG; D'Ávila Pessoa GC; Koerich LB; Pereira MH; Araujo RN; Gontijo NF; Viana Sant'Anna MR
    Insect Biochem Mol Biol; 2020 Jul; 122():103393. PubMed ID: 32360958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmission blocking sugar baits for the control of Leishmania development inside sand flies using environmentally friendly beta-glycosides and their aglycones.
    Ferreira TN; Pita-Pereira D; Costa SG; Brazil RP; Moraes CS; Díaz-Albiter HM; Genta FA
    Parasit Vectors; 2018 Nov; 11(1):614. PubMed ID: 30501613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbohydrate digestion in Lutzomyia longipalpis' larvae (Diptera - Psychodidae).
    Vale VF; Moreira BH; Moraes CS; Pereira MH; Genta FA; Gontijo NF
    J Insect Physiol; 2012 Oct; 58(10):1314-24. PubMed ID: 22841889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion.
    Moraes Cda S; Diaz-Albiter HM; Faria Mdo V; Sant'Anna MR; Dillon RJ; Genta FA
    Front Physiol; 2014; 5():276. PubMed ID: 25140153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies.
    Jochim RC; Teixeira CR; Laughinghouse A; Mu J; Oliveira F; Gomes RB; Elnaiem DE; Valenzuela JG
    BMC Genomics; 2008 Jan; 9():15. PubMed ID: 18194529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lutzomyia longipalpis: pH in the gut, digestive glycosidases, and some speculations upon Leishmania development.
    Gontijo NF; Almeida-Silva S; Costa FF; Mares-Guia ML; Williams P; Melo MN
    Exp Parasitol; 1998 Nov; 90(3):212-9. PubMed ID: 9806865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The biological function of sand fly and Leishmania glycosidases.
    Jacobson RL; Schlein Y; Eisenberger CL
    Med Microbiol Immunol; 2001 Nov; 190(1-2):51-5. PubMed ID: 11770110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies.
    Cihan AC; Yildiz ED; Sahin E; Mutlu O
    World J Microbiol Biotechnol; 2018 Jun; 34(7):95. PubMed ID: 29904894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases.
    Majzlová K; Pukajová Z; Janeček S
    Carbohydr Res; 2013 Feb; 367():48-57. PubMed ID: 23313816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17
    Miyazaki T; Park EY
    J Biol Chem; 2020 Jun; 295(26):8784-8797. PubMed ID: 32381508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.
    Miyazaki T; Ishizaki Y; Ichikawa M; Nishikawa A; Tonozuka T
    Biochem J; 2015 Jul; 469(1):145-58. PubMed ID: 25942325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases.
    Janeček Š; Svensson B; MacGregor EA
    Cell Mol Life Sci; 2014 Apr; 71(7):1149-70. PubMed ID: 23807207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of a conserved mammalian immunosuppression mechanism in
    Telleria EL; Tinoco-Nunes B; Forrest DM; Di-Blasi T; Leštinová T; Chang KP; Volf P; Pitaluga AN; Traub-Csekö YM
    Front Immunol; 2023; 14():1162596. PubMed ID: 38022562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.
    Telleria EL; Sant'Anna MR; Alkurbi MO; Pitaluga AN; Dillon RJ; Traub-Csekö YM
    Parasit Vectors; 2013 Jan; 6():12. PubMed ID: 23311993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caspar-like gene depletion reduces Leishmania infection in sand fly host Lutzomyia longipalpis.
    Telleria EL; Sant'Anna MR; Ortigão-Farias JR; Pitaluga AN; Dillon VM; Bates PA; Traub-Csekö YM; Dillon RJ
    J Biol Chem; 2012 Apr; 287(16):12985-93. PubMed ID: 22375009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an α-Glucosidase Enzyme Conserved in
    Bhandari P; Tingley JP; Palmer DRJ; Abbott DW; Hill JE
    J Bacteriol; 2021 Aug; 203(17):e0021321. PubMed ID: 34124938
    [No Abstract]   [Full Text] [Related]  

  • 19. The finding of Lutzomyia almerioi and Lutzomyia longipalpis naturally infected by Leishmania spp. in a cutaneous and canine visceral leishmaniases focus in Serra da Bodoquena, Brazil.
    Savani ES; Nunes VL; Galati EA; Castilho TM; Zampieri RA; Floeter-Winter LM
    Vet Parasitol; 2009 Mar; 160(1-2):18-24. PubMed ID: 19062193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides.
    Ikegaya M; Moriya T; Adachi N; Kawasaki M; Park EY; Miyazaki T
    J Biol Chem; 2022 May; 298(5):101827. PubMed ID: 35293315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.