These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33897820)

  • 1. Design and analysis of CRISPR-based underdominance toxin-antidote gene drives.
    Champer J; Champer SE; Kim IK; Clark AG; Messer PW
    Evol Appl; 2021 Apr; 14(4):1052-1069. PubMed ID: 33897820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance analysis of novel toxin-antidote CRISPR gene drive systems.
    Champer J; Kim IK; Champer SE; Clark AG; Messer PW
    BMC Biol; 2020 Mar; 18(1):27. PubMed ID: 32164660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of distant-site rescue elements for CRISPR toxin-antidote gene drives.
    Chen J; Xu X; Champer J
    Front Bioeng Biotechnol; 2023; 11():1138702. PubMed ID: 36860883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance characteristics allow for confinement of a CRISPR toxin-antidote gene drive for population suppression in a reaction-diffusion model.
    Zhang S; Champer J
    Proc Biol Sci; 2024 Jun; 291(2025):20240500. PubMed ID: 38889790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive.
    Zhu Y; Champer J
    ACS Synth Biol; 2023 Mar; 12(3):809-819. PubMed ID: 36825354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A toxin-antidote CRISPR gene drive system for regional population modification.
    Champer J; Lee E; Yang E; Liu C; Clark AG; Messer PW
    Nat Commun; 2020 Feb; 11(1):1082. PubMed ID: 32109227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological effects on underdominance threshold drives for vector control.
    Khamis D; El Mouden C; Kura K; Bonsall MB
    J Theor Biol; 2018 Nov; 456():1-15. PubMed ID: 30040965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling confinement and reversibility of threshold-dependent gene drive systems in spatially-explicit Aedes aegypti populations.
    Sánchez C HM; Bennett JB; Wu SL; Rašić G; Akbari OS; Marshall JM
    BMC Biol; 2020 May; 18(1):50. PubMed ID: 32398005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration of tethered gene drive systems for confined population modification or suppression.
    Metzloff M; Yang E; Dhole S; Clark AG; Messer PW; Champer J
    BMC Biol; 2022 May; 20(1):119. PubMed ID: 35606745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population Dynamics of Underdominance Gene Drive Systems in Continuous Space.
    Champer J; Zhao J; Champer SE; Liu J; Messer PW
    ACS Synth Biol; 2020 Apr; 9(4):779-792. PubMed ID: 32142612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invasion and migration of spatially self-limiting gene drives: A comparative analysis.
    Dhole S; Vella MR; Lloyd AL; Gould F
    Evol Appl; 2018 Jun; 11(5):794-808. PubMed ID: 29875820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A confinable home-and-rescue gene drive for population modification.
    Kandul NP; Liu J; Bennett JB; Marshall JM; Akbari OS
    Elife; 2021 Mar; 10():. PubMed ID: 33666174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evading resistance to gene drives.
    Gomulkiewicz R; Thies ML; Bull JJ
    Genetics; 2021 Feb; 217(2):. PubMed ID: 33724420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tethered homing gene drives: A new design for spatially restricted population replacement and suppression.
    Dhole S; Lloyd AL; Gould F
    Evol Appl; 2019 Sep; 12(8):1688-1702. PubMed ID: 31462923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overriding Mendelian inheritance in Arabidopsis with a CRISPR toxin-antidote gene drive that impairs pollen germination.
    Liu Y; Jiao B; Champer J; Qian W
    Nat Plants; 2024 Jun; 10(6):910-922. PubMed ID: 38886523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene drive escape from resistance depends on mechanism and ecology.
    Cook F; Bull JJ; Gomulkiewicz R
    Evol Appl; 2022 May; 15(5):721-734. PubMed ID: 35603023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Split drive killer-rescue provides a novel threshold-dependent gene drive.
    Edgington MP; Harvey-Samuel T; Alphey L
    Sci Rep; 2020 Nov; 10(1):20520. PubMed ID: 33239631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the suppression of a malaria vector using a CRISPR-Cas9 gene drive to reduce female fertility.
    North AR; Burt A; Godfray HCJ
    BMC Biol; 2020 Aug; 18(1):98. PubMed ID: 32782000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population.
    Champer J; Yang E; Lee E; Liu J; Clark AG; Messer PW
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24377-24383. PubMed ID: 32929034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement of gene drive systems to local populations: a comparative analysis.
    Marshall JM; Hay BA
    J Theor Biol; 2012 Feb; 294():153-71. PubMed ID: 22094363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.