These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3389808)

  • 1. Degradation of polysaccharides and lignin by ruminal bacteria and fungi.
    Akin DE; Benner R
    Appl Environ Microbiol; 1988 May; 54(5):1117-25. PubMed ID: 3389808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed fungal populations and lignocellulosic tissue degradation in the bovine rumen.
    Akin DE; Rigsby LL
    Appl Environ Microbiol; 1987 Sep; 53(9):1987-95. PubMed ID: 2823705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rumen fungi and forage fiber degradation.
    Windham WR; Akin DE
    Appl Environ Microbiol; 1984 Sep; 48(3):473-6. PubMed ID: 16346617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus.
    Akin DE; Rigsby LL; Sethuraman A; Morrison WH; Gamble GR; Eriksson KE
    Appl Environ Microbiol; 1995 Apr; 61(4):1591-8. PubMed ID: 7747973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.
    Bootten TJ; Joblin KN; McArdle BH; Harris PJ
    J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions.
    Lee SS; Ha JK; Cheng K
    Appl Environ Microbiol; 2000 Sep; 66(9):3807-13. PubMed ID: 10966394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of plant cell walls by ruminal bacteria, protozoa and fungi and their interaction with fibre particle size.
    Zhang Y; Gao W; Meng Q
    Arch Anim Nutr; 2007 Apr; 61(2):114-25. PubMed ID: 17451110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur.
    Akin DE; Gordon GL; Hogan JP
    Appl Environ Microbiol; 1983 Sep; 46(3):738-48. PubMed ID: 6639027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of cellulose and forage fiber fractions by ruminal cellulolytic bacteria alone and in coculture with phenolic monomer-degrading bacteria.
    Varel VH; Jung HG; Krumholz LR
    J Anim Sci; 1991 Dec; 69(12):4993-5000. PubMed ID: 1667013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical degradation of lignified stem tissues by ruminal fungi.
    Akin DE; Lyon CE; Windham WR; Rigsby LL
    Appl Environ Microbiol; 1989 Mar; 55(3):611-6. PubMed ID: 16347869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving ruminal digestibility of various wheat straw types by white-rot fungi.
    Nayan N; van Erven G; Kabel MA; Sonnenberg AS; Hendriks WH; Cone JW
    J Sci Food Agric; 2019 Jan; 99(2):957-965. PubMed ID: 30125969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of a colorimetric analysis for lignin and its use in studying the inhibitory effects of lignin on forage digestion by ruminal microorganisms.
    Fukushima RS; Dehority BA; Loerch SC
    J Anim Sci; 1991 Jan; 69(1):295-304. PubMed ID: 2005024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosubstrate strategy for enhancing lignocellulose degradation during rumen fermentation in vitro: Characteristics and microorganism composition.
    Xing BS; Han Y; Cao S; Wen J; Zhang K; Yuan H; Wang XC
    Chemosphere; 2020 Jul; 250():126104. PubMed ID: 32097809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rumen fungi: morphological types from Georgia cattle and the attack on forage cell walls.
    Akin DE; Borneman WS; Windham WR
    Biosystems; 1988; 21(3-4):385-91. PubMed ID: 3395692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of phenolic structures on the degradability of cell walls isolated from newly extended apical internode of tall fescue (Festuca arundinacea Schreb.).
    Vailhé MA; Provan GJ; Scobbie L; Chesson A; Maillot MP; Cornu A; Besle JM
    J Agric Food Chem; 2000 Mar; 48(3):618-23. PubMed ID: 10725124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on in situ fiber degradation, ruminal fermentation, and microbial protein synthesis in nonlactating cows fed alfalfa or bromegrass hay.
    Varel VH; Kreikemeier KK
    J Anim Sci; 1994 Jul; 72(7):1814-22. PubMed ID: 7928761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of benzyl ether bonds of lignin by ruminal microbes.
    Kajikawa H; Kudo H; Kondo T; Jodai K; Honda Y; Kuwahara M; Watanabe T
    FEMS Microbiol Lett; 2000 Jun; 187(1):15-20. PubMed ID: 10828393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial and animal limitations to fiber digestion and utilization.
    Varga GA; Kolver ES
    J Nutr; 1997 May; 127(5 Suppl):819S-823S. PubMed ID: 9164244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants.
    Nagler M; Kozjek K; Etemadi M; Insam H; Podmirseg SM
    J Biotechnol; 2019 Jul; 300():1-10. PubMed ID: 31082412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen.
    Gordon GL; Phillips MW
    Appl Environ Microbiol; 1989 Jul; 55(7):1703-10. PubMed ID: 2764575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.