These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 3389812)
1. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Mihelcic JR; Luthy RG Appl Environ Microbiol; 1988 May; 54(5):1188-98. PubMed ID: 3389812 [TBL] [Abstract][Full Text] [Related]
2. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Mihelcic JR; Luthy RG Appl Environ Microbiol; 1988 May; 54(5):1182-7. PubMed ID: 3389811 [TBL] [Abstract][Full Text] [Related]
3. Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria. Selifonov SA; Chapman PJ; Akkerman SB; Gurst JE; Bortiatynski JM; Nanny MA; Hatcher PG Appl Environ Microbiol; 1998 Apr; 64(4):1447-53. PubMed ID: 9546181 [TBL] [Abstract][Full Text] [Related]
4. Effect of soil/contaminant interactions on the biodegradation of naphthalene in flooded soil under denitrifying conditions. al-Bashir B; Cseh T; Leduc R; Samson R Appl Microbiol Biotechnol; 1990 Dec; 34(3):414-9. PubMed ID: 1367196 [TBL] [Abstract][Full Text] [Related]
5. [Investigation of the Coupling Mechanism Between Naphthalene Degradation and Denitrification of a Naphthalene Degraded Bacterial Consortium Under Denitrification]. Zhang ZY; Wang MX; Cheng YY; Zhou ZF Huan Jing Ke Xue; 2018 May; 39(5):2438-2445. PubMed ID: 29965545 [TBL] [Abstract][Full Text] [Related]
6. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Rockne KJ; Chee-Sanford JC; Sanford RA; Hedlund BP; Staley JT; Strand SE Appl Environ Microbiol; 2000 Apr; 66(4):1595-601. PubMed ID: 10742247 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Rockne KJ; Strand SE Water Res; 2001 Jan; 35(1):291-9. PubMed ID: 11257884 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability and biodegradation kinetics protocol for organic pollutant compounds to achieve environmentally acceptable endpoints during bioremediation. Tabak HH; Govind R Ann N Y Acad Sci; 1997 Nov; 829():36-61. PubMed ID: 9472313 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Ambrosoli R; Petruzzelli L; Luis Minati J; Ajmone Marsan F Chemosphere; 2005 Sep; 60(9):1231-6. PubMed ID: 16018893 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions. Dou J; Liu X; Ding A J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017 [TBL] [Abstract][Full Text] [Related]
11. Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants. Morasch B; Höhener P; Hunkeler D Environ Pollut; 2007 Aug; 148(3):739-48. PubMed ID: 17376572 [TBL] [Abstract][Full Text] [Related]
13. Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. Bauer JE; Capone DG Appl Environ Microbiol; 1988 Jul; 54(7):1649-55. PubMed ID: 3415231 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite. Mallick S Chemosphere; 2019 Mar; 219():748-755. PubMed ID: 30557732 [TBL] [Abstract][Full Text] [Related]
15. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Eriksson M; Sodersten E; Yu Z; Dalhammar G; Mohn WW Appl Environ Microbiol; 2003 Jan; 69(1):275-84. PubMed ID: 12514005 [TBL] [Abstract][Full Text] [Related]
16. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds. Bahr A; Fischer A; Vogt C; Bombach P Water Res; 2015 Feb; 69():100-109. PubMed ID: 25437342 [TBL] [Abstract][Full Text] [Related]
18. Differential bioavailability of soil-sorbed naphthalene to two bacterial species. Guerin WF; Boyd SA Appl Environ Microbiol; 1992 Apr; 58(4):1142-52. PubMed ID: 1599237 [TBL] [Abstract][Full Text] [Related]
19. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Piskonen R; Nyyssönen M; Rajamäki T; Itävaara M Biodegradation; 2005 Mar; 16(2):127-34. PubMed ID: 15730023 [TBL] [Abstract][Full Text] [Related]
20. Bioremediation of polycyclic aromatic hydrocarbon (PAH) compounds: (acenaphthene and fluorene) in water using indigenous bacterial species isolated from the Diep and Plankenburg rivers, Western Cape, South Africa. Alegbeleye OO; Opeolu BO; Jackson V Braz J Microbiol; 2017; 48(2):314-325. PubMed ID: 27956015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]