These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33898186)

  • 1. Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots.
    Magdanz V; Vivaldi J; Mohanty S; Klingner A; Vendittelli M; Simmchen J; Misra S; Khalil ISM
    Adv Sci (Weinh); 2021 Apr; 8(8):2004037. PubMed ID: 33898186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging.
    Middelhoek KINA; Magdanz V; Abelmann L; Khalil ISM
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 35985314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Flagellar Propulsion of Soft Microrobotic Sperm in a Viscous Heterogeneous Medium.
    Khalil ISM; Klingner A; Hamed Y; Magdanz V; Toubar M; Misra S
    Front Robot AI; 2019; 6():65. PubMed ID: 33501080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IRONSperm: Sperm-templated soft magnetic microrobots.
    Magdanz V; Khalil ISM; Simmchen J; Furtado GP; Mohanty S; Gebauer J; Xu H; Klingner A; Aziz A; Medina-Sánchez M; Schmidt OG; Misra S
    Sci Adv; 2020 Jul; 6(28):eaba5855. PubMed ID: 32923590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastohydrodynamic propulsion of a filament magnetically driven at both ends.
    Gürbüz A; Qin K; Abbott JJ; Pak OS
    Soft Matter; 2023 Sep; 19(37):7100-7108. PubMed ID: 37681748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sperm Cell Driven Microrobots-Emerging Opportunities and Challenges for Biologically Inspired Robotic Design.
    Singh AV; Ansari MHD; Mahajan M; Srivastava S; Kashyap S; Dwivedi P; Pandit V; Katha U
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32340402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy.
    Li M; Wu J; Lin D; Yang J; Jiao N; Wang Y; Liu L
    Acta Biomater; 2022 Dec; 154():443-453. PubMed ID: 36243369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields.
    Celi N; Gong D; Cai J
    Sci Rep; 2021 Nov; 11(1):21728. PubMed ID: 34741063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation.
    Xu R; Xu Q
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers.
    Khalil ISM; Tabak AF; Hamed Y; Mitwally ME; Tawakol M; Klingner A; Sitti M
    Adv Sci (Weinh); 2018 Feb; 5(2):1700461. PubMed ID: 29619299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar Propulsion of Sperm Cells Against a Time-Periodic Interaction Force.
    Wang Z; Klingner A; Magdanz V; Hoppenreijs MW; Misra S; Khalil ISM
    Adv Biol (Weinh); 2023 Jan; 7(1):e2200210. PubMed ID: 36266967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inductive sensing of magnetic microrobots under actuation by rotating magnetic fields.
    Christiansen MG; Stöcklin LR; Forbrigger C; Venkatesh SA; Schuerle S
    PNAS Nexus; 2023 Sep; 2(9):pgad297. PubMed ID: 37746329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion mechanism and thrust characteristics of amphibious robots with long fin fluctuation for propulsion on hard level ground.
    Zhang J; Zhou J; Yuan S; Jing C
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35728618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalysis dramatically influences motion of magnetic microrobots: Application to removal of microplastics and dyes.
    Mayorga-Burrezo P; Mayorga-Martinez CC; Pumera M
    J Colloid Interface Sci; 2023 Aug; 643():447-454. PubMed ID: 37086534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired magnetic swimming microrobots for biomedical applications.
    Peyer KE; Zhang L; Nelson BJ
    Nanoscale; 2013 Feb; 5(4):1259-72. PubMed ID: 23165991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats.
    Chen Q; Tang S; Li Y; Cong Z; Lu D; Yang Q; Zhang X; Wu S
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58382-58392. PubMed ID: 34860489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
    Liu H; Taylor B; Curet OM
    Soft Robot; 2017 Jun; 4(2):103-116. PubMed ID: 29182095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of magnetic biohybrid microrobots based on MSC.sTRAIL for targeted stem cell delivery and treatment of cancer.
    Gundersen RA; Chu T; Abolfathi K; Dogan SG; Blair PE; Nago N; Hamblin M; Brooke GN; Zwacka RM; Hoshiar AK; Mohr A
    Cancer Nanotechnol; 2023 May; 14():54. PubMed ID: 37869575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustically powered surface-slipping mobile microrobots.
    Aghakhani A; Yasa O; Wrede P; Sitti M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3469-3477. PubMed ID: 32015114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohybrid Microalgae Robots: Design, Fabrication, Materials, and Applications.
    Zhang F; Li Z; Chen C; Luan H; Fang RH; Zhang L; Wang J
    Adv Mater; 2024 Jan; 36(3):e2303714. PubMed ID: 37471001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.