These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 33898192)

  • 21. Material Design and Fabrication Strategies for Stretchable Metallic Nanocomposites.
    Joo H; Jung D; Sunwoo SH; Koo JH; Kim DH
    Small; 2020 Mar; 16(11):e1906270. PubMed ID: 32022440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment.
    Jeong SH; Chen S; Huo J; Gamstedt EK; Liu J; Zhang SL; Zhang ZB; Hjort K; Wu Z
    Sci Rep; 2015 Dec; 5():18257. PubMed ID: 26671673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft Elastomers with Programmable Stiffness as Strain-Isolating Substrates for Stretchable Electronics.
    Cai M; Nie S; Du Y; Wang C; Song J
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14340-14346. PubMed ID: 30938975
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretchable Transistor-Structured Artificial Synapses for Neuromorphic Electronics.
    Wang X; Yang H; Li E; Cao C; Zheng W; Chen H; Li W
    Small; 2023 May; 19(18):e2205395. PubMed ID: 36748849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent developments of truly stretchable thin film electronic and optoelectronic devices.
    Zhao J; Chi Z; Yang Z; Chen X; Arnold MS; Zhang Y; Xu J; Chi Z; Aldred MP
    Nanoscale; 2018 Mar; 10(13):5764-5792. PubMed ID: 29542765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent Advances in High-Mobility and High-Stretchability Organic Field-Effect Transistors: From Materials, Devices to Applications.
    Wu F; Liu Y; Zhang J; Duan S; Ji D; Yang H
    Small Methods; 2021 Dec; 5(12):e2100676. PubMed ID: 34928035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs.
    Wang S; Nie Y; Zhu H; Xu Y; Cao S; Zhang J; Li Y; Wang J; Ning X; Kong D
    Sci Adv; 2022 Apr; 8(13):eabl5511. PubMed ID: 35353566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stretchable One-Dimensional Conductors for Wearable Applications.
    Nie M; Li B; Hsieh YL; Fu KK; Zhou J
    ACS Nano; 2022 Dec; 16(12):19810-19839. PubMed ID: 36475644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stretchable carbon nanotube charge-trap floating-gate memory and logic devices for wearable electronics.
    Son D; Koo JH; Song JK; Kim J; Lee M; Shim HJ; Park M; Lee M; Kim JH; Kim DH
    ACS Nano; 2015 May; 9(5):5585-93. PubMed ID: 25897592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stretchable Energy Storage Devices Based on Carbon Materials.
    Li L; Wang L; Ye T; Peng H; Zhang Y
    Small; 2021 Dec; 17(48):e2005015. PubMed ID: 33624928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Imperfection-Insensitive Soft Network Materials for Applications in Stretchable Electronics.
    Liu J; Song H; Zhang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36100-36109. PubMed ID: 31502438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical Gradients Enable Highly Stretchable Electronics Based on Nanofiber Substrates.
    Wang M; Wang K; Ma C; Uzabakiriho PC; Chen X; Zhao G
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35997-36006. PubMed ID: 35894160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.
    Choi S; Lee H; Ghaffari R; Hyeon T; Kim DH
    Adv Mater; 2016 Jun; 28(22):4203-18. PubMed ID: 26779680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative life cycle assessment of stretchable and rigid electronics: a case study of cardiac monitoring devices.
    Kokare S; Asif FMA; MÃ¥rtensson G; Shoaib-Ul-Hasan S; Rashid A; Roci M; Salehi N
    Int J Environ Sci Technol (Tehran); 2022; 19(4):3087-3102. PubMed ID: 34054976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale Soft-Hard Interface Design for Flexible Hybrid Electronics.
    Gong S; Yap LW; Zhu B; Cheng W
    Adv Mater; 2020 Apr; 32(15):e1902278. PubMed ID: 31468635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies.
    Sunwoo SH; Ha KH; Lee S; Lu N; Kim DH
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():359-391. PubMed ID: 34097846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring.
    Jeong YR; Lee G; Park H; Ha JS
    Acc Chem Res; 2019 Jan; 52(1):91-99. PubMed ID: 30586283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-performance stretchable conductive nanocomposites: materials, processes, and device applications.
    Choi S; Han SI; Kim D; Hyeon T; Kim DH
    Chem Soc Rev; 2019 Mar; 48(6):1566-1595. PubMed ID: 30519703
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanically-Guided Structural Designs in Stretchable Inorganic Electronics.
    Xue Z; Song H; Rogers JA; Zhang Y; Huang Y
    Adv Mater; 2020 Apr; 32(15):e1902254. PubMed ID: 31348578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.