These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33898199)

  • 41. Programmable Locomotion Mechanisms of Nanowires with Semihard Magnetic Properties Near a Surface Boundary.
    Jang B; Hong A; Alcantara C; Chatzipirpiridis G; Martí X; Pellicer E; Sort J; Harduf Y; Or Y; Nelson BJ; Pané S
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3214-3223. PubMed ID: 30588788
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The bacterial linear motor of Spiroplasma melliferum BC3: from single molecules to swimming cells.
    Trachtenberg S; Gilad R; Geffen N
    Mol Microbiol; 2003 Feb; 47(3):671-97. PubMed ID: 12535069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent progress in magnetic applications for micro- and nanorobots.
    Xu K; Xu S; Wei F
    Beilstein J Nanotechnol; 2021; 12():744-755. PubMed ID: 34367858
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of Microscale Magnetic Tumbling Robots for Locomotion in Multiple Environments and Complex Terrains.
    Bi C; Guix M; Johnson BV; Jing W; Cappelleri DJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A minimal robophysical model of quadriflagellate self-propulsion.
    Diaz K; Robinson TL; Aydin YO; Aydin E; Goldman DI; Wan KY
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34359055
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design, fabrication and application of magnetically actuated micro/nanorobots: a review.
    Wang Z; Xu Z; Zhu B; Zhang Y; Lin J; Wu Y; Wu D
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34915458
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradable Metal-Organic Framework-Based Microrobots (MOFBOTs).
    Terzopoulou A; Wang X; Chen XZ; Palacios-Corella M; Pujante C; Herrero-Martín J; Qin XH; Sort J; deMello AJ; Nelson BJ; Puigmartí-Luis J; Pané S
    Adv Healthc Mater; 2020 Oct; 9(20):e2001031. PubMed ID: 32902185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flagellated Janus particles for multimodal actuation and transport.
    Rogowski LW; Zhang X; Tang J; Oxner M; Kim MJ
    Biomicrofluidics; 2021 Jul; 15(4):044104. PubMed ID: 34504637
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Helical Locomotion in a Granular Medium.
    Darbois Texier B; Ibarra A; Melo F
    Phys Rev Lett; 2017 Aug; 119(6):068003. PubMed ID: 28949602
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility.
    Wang W; Wu Z; Yang L; Si T; He Q
    ACS Nano; 2022 Jun; 16(6):9317-9328. PubMed ID: 35576530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tadpole-Like Flexible Microswimmers with the Head and Tail Both Magnetic.
    You M; Mou F; Wang K; Guan J
    ACS Appl Mater Interfaces; 2023 Aug; 15(34):40855-40863. PubMed ID: 37584677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A magnetically controlled soft miniature robotic fish with a flexible skeleton inspired by zebrafish.
    Huang C; Lai Z; Zhang L; Wu X; Xu T
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34479217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conical Hollow Microhelices with Superior Swimming Capabilities for Targeted Cargo Delivery.
    Xin C; Yang L; Li J; Hu Y; Qian D; Fan S; Hu K; Cai Z; Wu H; Wang D; Wu D; Chu J
    Adv Mater; 2019 Jun; 31(25):e1808226. PubMed ID: 31074118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stability of a Dumbbell Micro-Swimmer.
    Ishikawa T
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.
    Das A; Styslinger M; Harris DM; Zenit R
    Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix.
    Wu H; Greydanus B; Schwartz DK
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183394
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.