These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33898389)

  • 1. Methanol-Driven Oxidative Rearrangement of Biogenic Furans - Enzyme Cascades vs. Photobiocatalysis.
    Jäger C; Bruneau C; Wagner PK; Prechtl MHG; Deska J
    Front Chem; 2021; 9():635883. PubMed ID: 33898389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic aerobic ring rearrangement of optically active furylcarbinols.
    Thiel D; Doknić D; Deska J
    Nat Commun; 2014 Oct; 5():5278. PubMed ID: 25335580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achmatowicz Rearrangement-Inspired Development of Green Chemistry, Organic Methodology, and Total Synthesis of Natural Products.
    Liang L; Guo LD; Tong R
    Acc Chem Res; 2022 Aug; 55(16):2326-2340. PubMed ID: 35916456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biorefinery via Achmatowicz Rearrangement: Synthesis of Pentane-1,2,5-triol from Furfuryl Alcohol.
    Simeonov SP; Ravutsov MA; Mihovilovic MD
    ChemSusChem; 2019 Jun; 12(12):2748-2754. PubMed ID: 31050856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coding Synthetic Chemistry Strategies for Furan Valorization into Bacterial Designer Cells.
    Liu YC; Wu ZL; Deska J
    ChemSusChem; 2023 Jan; 16(2):e202201790. PubMed ID: 36416391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,5-Allyl Shift by a Sequential Achmatowicz/Oxonia-Cope/Retro-Achmatowicz Rearrangement.
    Zhang X; Tong Y; Li G; Zhao H; Chen G; Yao H; Tong R
    Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205919. PubMed ID: 35670657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Biocatalytic Rearrangement of Furans to Spirolactones.
    Liu YC; Rolfes JD; Björklund J; Deska J
    ACS Catal; 2023 Jun; 13(11):7256-7262. PubMed ID: 37288097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic synthesis of heterocycles from biomass-derived furfuryl alcohols.
    Liu X; Li B; Han G; Liu X; Cao Z; Jiang DE; Sun Y
    Nat Commun; 2021 Mar; 12(1):1868. PubMed ID: 33767166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective Synthesis of Biologically Relevant Tetrahydropyridines and Dihydro-2
    Eckl R; Fischer S; Sonnleitner CM; Schmidhuber D; Rehbein J; Reiser O
    ACS Org Inorg Au; 2022 Apr; 2(2):169-174. PubMed ID: 36855453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kirmse-Doyle- and Stevens-Type Rearrangements of Glutarate-Derived Oxonium Ylides.
    Skrobo B; Schlörer NE; Neudörfl JM; Deska J
    Chemistry; 2018 Mar; 24(13):3209-3217. PubMed ID: 29231265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic Valorization of Furans: Opportunities for Inherently Unstable Substrates.
    Domínguez de María P; Guajardo N
    ChemSusChem; 2017 Nov; 10(21):4123-4134. PubMed ID: 28869788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Photochemical Two-Step Formal [5+2] Cycloaddition: A Condensation/Ring-Expansion Approach to Substituted Azepanes.
    Thullen SM; Rubush DM; Rovis T
    Synlett; 2017 Dec; 28(20):2755-2758. PubMed ID: 29861552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition/oxidative rearrangement of 3-furfurals and 3-furyl imines: new approaches to substituted furans and pyrroles.
    Kelly AR; Kerrigan MH; Walsh PJ
    J Am Chem Soc; 2008 Mar; 130(12):4097-104. PubMed ID: 18314989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diastereoselective reductive ring expansion of spiroketal dihydropyranones to cis-fused bicyclic ethers.
    Zhu L; Song L; Tong R
    Org Lett; 2012 Dec; 14(23):5892-5. PubMed ID: 23163770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Taming furfuryl cations for the synthesis of privileged structures and novel scaffolds.
    Dhiman S; Ramasastry SS
    Org Biomol Chem; 2013 Jul; 11(26):4299-303. PubMed ID: 23736893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold catalyzed diastereoselective cascade allylation/enyne cycloisomerization to construct densely functionalized oxygen heterocycles.
    Chen Z; Zhang YX; Wang YH; Zhu LL; Liu H; Li XX; Guo L
    Org Lett; 2010 Aug; 12(15):3468-71. PubMed ID: 20608668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Pot Synthesis of Functionalized Fused Furans via a BODIPY-Catalyzed Domino Photooxygenation.
    Mauger A; Farjon J; Nun P; Coeffard V
    Chemistry; 2018 Apr; 24(19):4790-4793. PubMed ID: 29341287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Potential of Regio- and Stereoselective Ring Expansion Reactions of Six-Membered Carbo- and Heterocyclic Ring Systems: A Review.
    Noor R; Zahoor AF; Mansha A; Khan SG; Haq AU; Ahmad S; Al-Hussain SA; Irfan A; Zaki MEA
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Waixenicin A: Exploring Strategies for Nine-Membered Ring Formation.
    Steinborn C; Huber T; Lichtenegger J; Plangger I; Höfler D; Schnell SD; Weisheit L; Mayer P; Wurst K; Magauer T
    Chemistry; 2024 Feb; 30(7):e202303489. PubMed ID: 37942708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light.
    Özgen FF; Runda ME; Schmidt S
    Chembiochem; 2021 Mar; 22(5):790-806. PubMed ID: 32961020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.