BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33898635)

  • 1. Machine learning prediction of methionine and tryptophan photooxidation susceptibility.
    Delmar JA; Buehler E; Chetty AK; Das A; Quesada GM; Wang J; Chen X
    Mol Ther Methods Clin Dev; 2021 Jun; 21():466-477. PubMed ID: 33898635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Enables Accurate Prediction of Asparagine Deamidation Probability and Rate.
    Delmar JA; Wang J; Choi SW; Martins JA; Mikhail JP
    Mol Ther Methods Clin Dev; 2019 Dec; 15():264-274. PubMed ID: 31890727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Susceptibility of Antibody CDR Residues to Chemical Modifications Can Be Revealed Prior to Antibody Humanization and Aid in the Lead Selection Process.
    Xu A; Kim HS; Estee S; ViaJar S; Galush WJ; Gill A; Hötzel I; Lazar GA; McDonald P; Andersen N; Spiess C
    Mol Pharm; 2018 Oct; 15(10):4529-4537. PubMed ID: 30118239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction.
    Pavon JA; Xiao L; Li X; Zhao J; Aldredge D; Dank E; Fridman A; Liu YH
    Anal Chem; 2019 Feb; 91(3):2192-2200. PubMed ID: 30608647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Tryptophan Oxidation in Complementarity-Determining Regions of Two Monoclonal Antibodies on Structure-Function Characterized by Hydrogen-Deuterium Exchange Mass Spectrometry and Surface Plasmon Resonance.
    Hageman T; Wei H; Kuehne P; Fu J; Ludwig R; Tao L; Leone A; Zocher M; Das TK
    Pharm Res; 2018 Dec; 36(1):24. PubMed ID: 30536043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization.
    Ji JA; Zhang B; Cheng W; Wang YJ
    J Pharm Sci; 2009 Dec; 98(12):4485-500. PubMed ID: 19455640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies.
    Yang R; Jain T; Lynaugh H; Nobrega RP; Lu X; Boland T; Burnina I; Sun T; Caffry I; Brown M; Zhi X; Lilov A; Xu Y
    MAbs; 2017; 9(4):646-653. PubMed ID: 28281887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem mass spectrometry and infrared spectroscopy as a tool to identify peptide oxidized residues.
    Scuderi D; Ignasiak MT; Serfaty X; de Oliveira P; Houée Levin C
    Phys Chem Chem Phys; 2015 Oct; 17(39):25998-6007. PubMed ID: 26292724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the degradation products of a color-changed monoclonal antibody: tryptophan-derived chromophores.
    Li Y; Polozova A; Gruia F; Feng J
    Anal Chem; 2014 Jul; 86(14):6850-7. PubMed ID: 24937252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique Impacts of Methionine Oxidation, Tryptophan Oxidation, and Asparagine Deamidation on Antibody Stability and Aggregation.
    Alam ME; Slaney TR; Wu L; Das TK; Kar S; Barnett GV; Leone A; Tessier PM
    J Pharm Sci; 2020 Jan; 109(1):656-669. PubMed ID: 31678251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation.
    Schöneich C
    J Pharm Pharmacol; 2018 May; 70(5):655-665. PubMed ID: 28134972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection and Measurement of Methionine Oxidation in Proteins.
    Sen KI; Hepler R; Nanda H
    Curr Protoc Protein Sci; 2017 Feb; 87():14.16.1-14.16.11. PubMed ID: 28150882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying predictive factors for neuropathic pain after breast cancer surgery using machine learning.
    Juwara L; Arora N; Gornitsky M; Saha-Chaudhuri P; Velly AM
    Int J Med Inform; 2020 Sep; 141():104170. PubMed ID: 32544823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan.
    Janssen EM; Erickson PR; McNeill K
    Environ Sci Technol; 2014 May; 48(9):4916-24. PubMed ID: 24708197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of photooxidation sites in bovine alpha-crystallin.
    Finley EL; Busman M; Dillon J; Crouch RK; Schey KL
    Photochem Photobiol; 1997 Nov; 66(5):635-41. PubMed ID: 9383987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic Modeling of Methionine Oxidation in Monoclonal Antibodies from Hydrogen Peroxide Spiking Studies.
    Hui A; Lam XM; Kuehl C; Grauschopf U; Wang YJ
    PDA J Pharm Sci Technol; 2015; 69(4):511-25. PubMed ID: 26242787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early engineering approaches to improve peptide developability and manufacturability.
    Furman JL; Chiu M; Hunter MJ
    AAPS J; 2015 Jan; 17(1):111-20. PubMed ID: 25338742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison between light induced and chemically induced oxidation of rhVEGF.
    Duenas ET; Keck R; De Vos A; Jones AJ; Cleland JL
    Pharm Res; 2001 Oct; 18(10):1455-60. PubMed ID: 11697472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan oxidation photosensitized by pterin.
    Thomas AH; Serrano MP; Rahal V; Vicendo P; Claparols C; Oliveros E; Lorente C
    Free Radic Biol Med; 2013 Oct; 63():467-75. PubMed ID: 23747929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.