These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33898829)

  • 1. An integrated assessment model for food security under climate change for South Asia.
    Alvi S; Roson R; Sartori M; Jamil F
    Heliyon; 2021 Apr; 7(4):e06707. PubMed ID: 33898829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the regional risks to food availability and access from land-based climate policies in an integrated assessment model.
    Cui RY; Waldhoff S; Clarke L; Hultman N; Patwardhan A; Gilmore EA
    Environ Syst Decis; 2022; 42(4):547-555. PubMed ID: 35646511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).
    Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L
    Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agriculture, bioenergy, and water implications of constrained cereal trade and climate change impacts.
    Zhang Y; Waldhoff S; Wise M; Edmonds J; Patel P
    PLoS One; 2023; 18(9):e0291577. PubMed ID: 37713389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of climate change on food security in South Africa: Current realities and challenges ahead.
    Masipa TS
    Jamba; 2017; 9(1):411. PubMed ID: 29955344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global impacts of heat and water stress on food production and severe food insecurity.
    Kompas T; Che TN; Grafton RQ
    Sci Rep; 2024 Jun; 14(1):14398. PubMed ID: 38909134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global implications of regional grain production through virtual water trade.
    Masud MB; Wada Y; Goss G; Faramarzi M
    Sci Total Environ; 2019 Apr; 659():807-820. PubMed ID: 31096411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of climate in the trend and variability of Ethiopia's cereal crop yields.
    Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E
    Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future rice farming threatened by drought in the Lower Mekong Basin.
    Kang H; Sridhar V; Mainuddin M; Trung LD
    Sci Rep; 2021 Apr; 11(1):9383. PubMed ID: 33931657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal analysis of projected impacts of climate change on the major C3 and C4 crop yield under representative concentration pathway 4.5: Insight from the coasts of Tamil Nadu, South India.
    A R; Praveen D; R J; D R; K P
    PLoS One; 2017; 12(7):e0180706. PubMed ID: 28753605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of climate signals in the crop yield record of sub-Saharan Africa.
    Hoffman AL; Kemanian AR; Forest CE
    Glob Chang Biol; 2018 Jan; 24(1):143-157. PubMed ID: 28892592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis.
    Liu D; Mishra AK; Ray DK
    Sci Total Environ; 2020 Dec; 748():141431. PubMed ID: 32805570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the global occurrence of maize diseases and estimation of yield loss under climate change.
    Ma Z; Wang W; Chen X; Gehman K; Yang H; Yang Y
    Pest Manag Sci; 2024 Jul; ():. PubMed ID: 38989640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa.
    Egbebiyi TS; Crespo O; Lennard C; Zaroug M; Nikulin G; Harris I; Price J; Forstenhäusler N; Warren R
    PeerJ; 2020; 8():e8851. PubMed ID: 32411508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical issues suggested by trends in food, population, and the environment to the year 2020.
    Rosegrant MW; Sombilla MA
    Am J Agric Econ; 1997; 79(5):1467-70. PubMed ID: 12294473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.
    Zhang T; Huang Y
    J Sci Food Agric; 2012 Jun; 92(8):1643-52. PubMed ID: 22190019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions.
    Li T; Hasegawa T; Yin X; Zhu Y; Boote K; Adam M; Bregaglio S; Buis S; Confalonieri R; Fumoto T; Gaydon D; Marcaida M; Nakagawa H; Oriol P; Ruane AC; Ruget F; Singh B; Singh U; Tang L; Tao F; Wilkens P; Yoshida H; Zhang Z; Bouman B
    Glob Chang Biol; 2015 Mar; 21(3):1328-41. PubMed ID: 25294087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection.
    Zhang H; Zhou G; Liu L; Wang B; Xiao D; He L
    Sci Total Environ; 2019 May; 666():126-138. PubMed ID: 30798223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.