These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33898850)

  • 1. Determination of petroleum hydrocarbon contamination in soil using VNIR DRS and PLSR modeling.
    Olatunde KA
    Heliyon; 2021 Apr; 7(4):e06794. PubMed ID: 33898850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.
    Chakraborty S; Weindorf DC; Zhu Y; Li B; Morgan CL; Ge Y; Galbraith J
    J Environ Monit; 2012 Nov; 14(11):2886-92. PubMed ID: 22986574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.
    Chakraborty S; Weindorf DC; Morgan CL; Ge Y; Galbraith JM; Li B; Kahlon CS
    J Environ Qual; 2010; 39(4):1378-87. PubMed ID: 20830926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling.
    Semella S; Hutengs C; Seidel M; Ulrich M; Schneider B; Ortner M; Thiele-Bruhn S; Ludwig B; Vohland M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.
    Chakraborty S; Weindorf DC; Li B; Ali Aldabaa AA; Ghosh RK; Paul S; Nasim Ali M
    Sci Total Environ; 2015 May; 514():399-408. PubMed ID: 25681776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape.
    Jia X; Chen S; Yang Y; Zhou L; Yu W; Shi Z
    Sci Rep; 2017 May; 7(1):2144. PubMed ID: 28526841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils.
    Douglas RK; Nawar S; Cipullo S; Alamar MC; Coulon F; Mouazen AM
    Sci Total Environ; 2018 Jun; 626():1108-1120. PubMed ID: 29898518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the Characterization of VNIR-MIR Spectra and Prediction of Soil Organic Matter in Paddy Soil].
    Chen SC; Peng J; Ji WJ; Zhou Y; He JX; Shi Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1712-6. PubMed ID: 30052377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of As in soil with reflectance spectroscopy].
    Zheng GH; Zhou SL; Wu SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):173-6. PubMed ID: 21428082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
    Yousefi G; Homaee M; Norouzi AA
    Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy.
    Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C
    Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.
    Douglas RK; Nawar S; Alamar MC; Mouazen AM; Coulon F
    Sci Total Environ; 2018 Mar; 616-617():147-155. PubMed ID: 29127788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy.
    Zhang X; Sun W; Cen Y; Zhang L; Wang N
    Sci Total Environ; 2019 Feb; 650(Pt 1):321-334. PubMed ID: 30199678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics.
    Liu J; Han J; Xie J; Wang H; Tong W; Ba Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117639. PubMed ID: 31610465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction-gas chromatography.
    Okparanma RN; Coulon F; Mouazen AM
    Environ Pollut; 2014 Jan; 184():298-305. PubMed ID: 24077341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving In-Situ Estimation of Soil Profile Properties Using a Multi-Sensor Probe.
    Pei X; Sudduth KA; Veum KS; Li M
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30818828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils.
    Correa Pabón RE; Souza Filho CR; Oliveira WJ
    Sci Total Environ; 2019 Feb; 649():1224-1236. PubMed ID: 30308893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of a handheld mid-infrared spectrometry for rapid measurement of oil contamination in agricultural sites.
    Douglas RK; Nawar S; Alamar MC; Coulon F; Mouazen AM
    Sci Total Environ; 2019 May; 665():253-261. PubMed ID: 30772556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.