BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33898850)

  • 1. Determination of petroleum hydrocarbon contamination in soil using VNIR DRS and PLSR modeling.
    Olatunde KA
    Heliyon; 2021 Apr; 7(4):e06794. PubMed ID: 33898850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.
    Chakraborty S; Weindorf DC; Zhu Y; Li B; Morgan CL; Ge Y; Galbraith J
    J Environ Monit; 2012 Nov; 14(11):2886-92. PubMed ID: 22986574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid identification of oil-contaminated soils using visible near-infrared diffuse reflectance spectroscopy.
    Chakraborty S; Weindorf DC; Morgan CL; Ge Y; Galbraith JM; Li B; Kahlon CS
    J Environ Qual; 2010; 39(4):1378-87. PubMed ID: 20830926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling.
    Semella S; Hutengs C; Seidel M; Ulrich M; Schneider B; Ortner M; Thiele-Bruhn S; Ludwig B; Vohland M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils.
    Chakraborty S; Weindorf DC; Li B; Ali Aldabaa AA; Ghosh RK; Paul S; Nasim Ali M
    Sci Total Environ; 2015 May; 514():399-408. PubMed ID: 25681776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape.
    Jia X; Chen S; Yang Y; Zhou L; Yu W; Shi Z
    Sci Rep; 2017 May; 7(1):2144. PubMed ID: 28526841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils.
    Douglas RK; Nawar S; Cipullo S; Alamar MC; Coulon F; Mouazen AM
    Sci Total Environ; 2018 Jun; 626():1108-1120. PubMed ID: 29898518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the Characterization of VNIR-MIR Spectra and Prediction of Soil Organic Matter in Paddy Soil].
    Chen SC; Peng J; Ji WJ; Zhou Y; He JX; Shi Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1712-6. PubMed ID: 30052377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of As in soil with reflectance spectroscopy].
    Zheng GH; Zhou SL; Wu SH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan; 31(1):173-6. PubMed ID: 21428082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
    Yousefi G; Homaee M; Norouzi AA
    Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of bioaccessible lead in urban and suburban soils with Vis-NIR diffuse reflectance spectroscopy.
    Paltseva AA; Deeb M; Di Iorio E; Circelli L; Cheng Z; Colombo C
    Sci Total Environ; 2022 Feb; 809():151107. PubMed ID: 34688767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques.
    Douglas RK; Nawar S; Alamar MC; Mouazen AM; Coulon F
    Sci Total Environ; 2018 Mar; 616-617():147-155. PubMed ID: 29127788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy.
    Zhang X; Sun W; Cen Y; Zhang L; Wang N
    Sci Total Environ; 2019 Feb; 650(Pt 1):321-334. PubMed ID: 30199678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics.
    Liu J; Han J; Xie J; Wang H; Tong W; Ba Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117639. PubMed ID: 31610465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of petroleum-contaminated soils by diffuse reflectance spectroscopy and sequential ultrasonic solvent extraction-gas chromatography.
    Okparanma RN; Coulon F; Mouazen AM
    Environ Pollut; 2014 Jan; 184():298-305. PubMed ID: 24077341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving In-Situ Estimation of Soil Profile Properties Using a Multi-Sensor Probe.
    Pei X; Sudduth KA; Veum KS; Li M
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30818828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance and imaging spectroscopy applied to detection of petroleum hydrocarbon pollution in bare soils.
    Correa Pabón RE; Souza Filho CR; Oliveira WJ
    Sci Total Environ; 2019 Feb; 649():1224-1236. PubMed ID: 30308893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of a handheld mid-infrared spectrometry for rapid measurement of oil contamination in agricultural sites.
    Douglas RK; Nawar S; Alamar MC; Coulon F; Mouazen AM
    Sci Total Environ; 2019 May; 665():253-261. PubMed ID: 30772556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.