BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 33899139)

  • 1. Using Genetic Marginal Effects to Study Gene-Environment Interactions with GWAS Data.
    Verhulst B; Pritikin JN; Clifford J; Prom-Wormley E
    Behav Genet; 2021 May; 51(3):358-373. PubMed ID: 33899139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GxEsum: a novel approach to estimate the phenotypic variance explained by genome-wide GxE interaction based on GWAS summary statistics for biobank-scale data.
    Shin J; Lee SH
    Genome Biol; 2021 Jun; 22(1):183. PubMed ID: 34154633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging phenotypic variability to identify genetic interactions in human phenotypes.
    Marderstein AR; Davenport ER; Kulm S; Van Hout CV; Elemento O; Clark AG
    Am J Hum Genet; 2021 Jan; 108(1):49-67. PubMed ID: 33326753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide contribution of genotype by environment interaction to variation of diabetes-related traits.
    Zheng JS; Arnett DK; Lee YC; Shen J; Parnell LD; Smith CE; Richardson K; Li D; Borecki IB; Ordovás JM; Lai CQ
    PLoS One; 2013; 8(10):e77442. PubMed ID: 24204828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust model-free approach for rare variants association studies incorporating gene-gene and gene-environmental interactions.
    Fan R; Lo SH
    PLoS One; 2013; 8(12):e83057. PubMed ID: 24358248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput allele-specific expression across 250 environmental conditions.
    Moyerbrailean GA; Richards AL; Kurtz D; Kalita CA; Davis GO; Harvey CT; Alazizi A; Watza D; Sorokin Y; Hauff N; Zhou X; Wen X; Pique-Regi R; Luca F
    Genome Res; 2016 Dec; 26(12):1627-1638. PubMed ID: 27934696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GW-SEM 2.0: Efficient, Flexible, and Accessible Multivariate GWAS.
    Pritikin JN; Neale MC; Prom-Wormley EC; Clark SL; Verhulst B
    Behav Genet; 2021 May; 51(3):343-357. PubMed ID: 33604756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide interaction of genotype by erythrocyte n-3 fatty acids contributes to phenotypic variance of diabetes-related traits.
    Zheng JS; Lai CQ; Parnell LD; Lee YC; Shen J; Smith CE; Casas-Agustench P; Richardson K; Li D; Noel SE; Tucker KL; Arnett DK; Borecki IB; Ordovás JM
    BMC Genomics; 2014 Sep; 15(1):781. PubMed ID: 25213455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fast and powerful linear mixed model approach for genotype-environment interaction tests in large-scale GWAS.
    Zhong W; Chhibber A; Luo L; Mehrotra DV; Shen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Interaction and Dispersion Effects in the Analysis of Gene-by-Environment Interaction.
    Domingue BW; Kanopka K; Mallard TT; Trejo S; Tucker-Drob EM
    Behav Genet; 2022 Jan; 52(1):56-64. PubMed ID: 34855050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know?
    Simonds NI; Ghazarian AA; Pimentel CB; Schully SD; Ellison GL; Gillanders EM; Mechanic LE
    Genet Epidemiol; 2016 Jul; 40(5):356-65. PubMed ID: 27061572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HisCoM-G×E: Hierarchical Structural Component Analysis of Gene-Based Gene-Environment Interactions.
    Choi S; Lee S; Huh I; Hwang H; Park T
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32937825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Gene-Diabetes and Gene-Obesity Interaction Scan in 8,255 Cases and 11,900 Controls from PanScan and PanC4 Consortia.
    Tang H; Jiang L; Stolzenberg-Solomon RZ; Arslan AA; Beane Freeman LE; Bracci PM; Brennan P; Canzian F; Du M; Gallinger S; Giles GG; Goodman PJ; Kooperberg C; Le Marchand L; Neale RE; Shu XO; Visvanathan K; White E; Zheng W; Albanes D; Andreotti G; Babic A; Bamlet WR; Berndt SI; Blackford A; Bueno-de-Mesquita B; Buring JE; Campa D; Chanock SJ; Childs E; Duell EJ; Fuchs C; Gaziano JM; Goggins M; Hartge P; Hassam MH; Holly EA; Hoover RN; Hung RJ; Kurtz RC; Lee IM; Malats N; Milne RL; Ng K; Oberg AL; Orlow I; Peters U; Porta M; Rabe KG; Rothman N; Scelo G; Sesso HD; Silverman DT; Thompson IM; Tjønneland A; Trichopoulou A; Wactawski-Wende J; Wentzensen N; Wilkens LR; Yu H; Zeleniuch-Jacquotte A; Amundadottir LT; Jacobs EJ; Petersen GM; Wolpin BM; Risch HA; Chatterjee N; Klein AP; Li D; Kraft P; Wei P
    Cancer Epidemiol Biomarkers Prev; 2020 Sep; 29(9):1784-1791. PubMed ID: 32546605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring Gene-by-Environment Interactions with a Bayesian Whole-Genome Regression Model.
    Kerin M; Marchini J
    Am J Hum Genet; 2020 Oct; 107(4):698-713. PubMed ID: 32888427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland.
    Arnau-Soler A; Macdonald-Dunlop E; Adams MJ; Clarke TK; MacIntyre DJ; Milburn K; Navrady L; ; ; Hayward C; McIntosh AM; Thomson PA
    Transl Psychiatry; 2019 Feb; 9(1):14. PubMed ID: 30718454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing gene-environment interactions for common and rare variants with binary traits using gene-trait similarity regression.
    Zhao G; Marceau R; Zhang D; Tzeng JY
    Genetics; 2015 Mar; 199(3):695-710. PubMed ID: 25585620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smooth-threshold multivariate genetic prediction incorporating gene-environment interactions.
    Ueki M; Tamiya G;
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34849749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditional analysis of multiple quantitative traits based on marginal GWAS summary statistics.
    Deng Y; Pan W
    Genet Epidemiol; 2017 Jul; 41(5):427-436. PubMed ID: 28464407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable prediction accuracy of polygenic scores within an ancestry group.
    Mostafavi H; Harpak A; Agarwal I; Conley D; Pritchard JK; Przeworski M
    Elife; 2020 Jan; 9():. PubMed ID: 31999256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses.
    Cattaneo A; Cattane N; Malpighi C; Czamara D; Suarez A; Mariani N; Kajantie E; Luoni A; Eriksson JG; Lahti J; Mondelli V; Dazzan P; Räikkönen K; Binder EB; Riva MA; Pariante CM
    Mol Psychiatry; 2018 Nov; 23(11):2192-2208. PubMed ID: 29302075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.