These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33899324)

  • 1. Smart Adsorbents for Aquatic Environmental Remediation.
    Nazarzadeh Zare E; Mudhoo A; Ali Khan M; Otero M; Bundhoo ZMA; Patel M; Srivastava A; Navarathna C; Mlsna T; Mohan D; Pittman CU; Makvandi P; Sillanpää M
    Small; 2021 Aug; 17(34):e2007840. PubMed ID: 33899324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analysis of the versatility and effectiveness of composts for sequestering heavy metal ions, dyes and xenobiotics from soils and aqueous milieus.
    Mudhoo A; Ramasamy DL; Bhatnagar A; Usman M; Sillanpää M
    Ecotoxicol Environ Saf; 2020 Jul; 197():110587. PubMed ID: 32325327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of organic pollutants from aqueous solution using metal organic frameworks (MOFs)-based adsorbents: A review.
    Tchinsa A; Hossain MF; Wang T; Zhou Y
    Chemosphere; 2021 Dec; 284():131393. PubMed ID: 34323783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental remediation of heavy metal ions from aqueous solution through hydrogel adsorption: a critical review.
    Muya FN; Sunday CE; Baker P; Iwuoha E
    Water Sci Technol; 2016; 73(5):983-92. PubMed ID: 26942518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances for dyes removal using novel adsorbents: A review.
    Zhou Y; Lu J; Zhou Y; Liu Y
    Environ Pollut; 2019 Sep; 252(Pt A):352-365. PubMed ID: 31158664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms.
    Liu B; Gai S; Lan Y; Cheng K; Yang F
    Environ Res; 2022 Sep; 212(Pt B):113353. PubMed ID: 35483409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A critical review on adsorption and recovery of fluoride from wastewater by metal-based adsorbents.
    Ni C; Liu C; Xie Y; Xie W; He Z; Zhong H
    Environ Sci Pollut Res Int; 2022 Nov; 29(55):82740-82761. PubMed ID: 36224467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments.
    Adeeyo RO; Edokpayi JN; Bello OS; Adeeyo AO; Odiyo JO
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31756953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review.
    Liu Q; Zhou Y; Lu J; Zhou Y
    Chemosphere; 2020 Feb; 241():125043. PubMed ID: 31683417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural, low-cost adsorbents for toxic Pb(II) ion sequestration from (waste)water: A state-of-the-art review.
    Oladoye PO
    Chemosphere; 2022 Jan; 287(Pt 2):132130. PubMed ID: 34517237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants.
    Selvasembian R; Gwenzi W; Chaukura N; Mthembu S
    J Hazard Mater; 2021 Sep; 417():125960. PubMed ID: 34229405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced remediation of lead (II) and cadmium (II) ions from aqueous media using porous magnetic nanocomposites - A comprehensive review on applications and mechanism.
    Bosu S; Rajamohan N; Rajasimman M
    Environ Res; 2022 Oct; 213():113720. PubMed ID: 35738419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments.
    da Silva Alves DC; Healy B; Pinto LAA; Cadaval TRS; Breslin CB
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33498661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic insight into selective adsorption and easy regeneration of carboxyl-functionalized MOFs towards heavy metals.
    Ji C; Xu M; Yu H; Lv L; Zhang W
    J Hazard Mater; 2022 Feb; 424(Pt D):127684. PubMed ID: 34774352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion exchangers as adsorbents for removing metals from aquatic media.
    Khan MA; Bushra R; Ahmad A; Nabi SA; Khan DA; Akhtar A
    Arch Environ Contam Toxicol; 2014 Feb; 66(2):259-69. PubMed ID: 24292693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomaterials as versatile adsorbents for heavy metal ions in water: a review.
    Sarma GK; Sen Gupta S; Bhattacharyya KG
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6245-6278. PubMed ID: 30623336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent developments of magnetic nanoadsorbents for remediation of arsenic from aqueous stream.
    Ahmaruzzaman M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(12):1058-1072. PubMed ID: 36482735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoresponsive MXene composite system with high adsorption capacity for quick and simple removal of toxic metal ions from aqueous environment.
    Peng C; Li X; Jiang P; Peng W; Tang J; Li L; Ye L; Pan S; Chen S
    J Hazard Mater; 2022 Oct; 440():129740. PubMed ID: 35969954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater.
    Nayeem A; Ali MF; Shariffuddin JH
    Environ Res; 2023 Jan; 216(Pt 1):114306. PubMed ID: 36191616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.