These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33899461)
1. Antifungal Mechanism of Volatile Organic Compounds Produced by Wang K; Qin Z; Wu S; Zhao P; Zhen C; Gao H J Agric Food Chem; 2021 May; 69(17):5267-5278. PubMed ID: 33899461 [No Abstract] [Full Text] [Related]
2. Effects of Bacillus Subtilis CF-3 VOCs Combined with Heat Treatment on the Control of Monilinia fructicola in Peaches and Colletotrichum gloeosporioides in Litchi Fruit. Wu S; Zhen C; Wang K; Gao H J Food Sci; 2019 Dec; 84(12):3418-3428. PubMed ID: 31762032 [TBL] [Abstract][Full Text] [Related]
3. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. Zhao P; Li P; Wu S; Zhou M; Zhi R; Gao H AMB Express; 2019 Jul; 9(1):119. PubMed ID: 31352537 [TBL] [Abstract][Full Text] [Related]
4. Research on Volatile Organic Compounds From Gao H; Li P; Xu X; Zeng Q; Guan W Front Microbiol; 2018; 9():456. PubMed ID: 29593695 [TBL] [Abstract][Full Text] [Related]
5. Antifungal effect of volatile organic compounds produced by Streptomyces salmonis PSRDC-09 against anthracnose pathogen Colletotrichum gloeosporioides PSU-03 in postharvest chili fruit. Boukaew S; Cheirsilp B; Prasertsan P; Yossan S J Appl Microbiol; 2021 Sep; 131(3):1452-1463. PubMed ID: 33570812 [TBL] [Abstract][Full Text] [Related]
6. Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides. Li X; Zhang L; Zhao Y; Feng J; Chen Y; Li K; Zhang M; Qi D; Zhou D; Wei Y; Wang W; Xie J Food Chem; 2024 Mar; 437(Pt 2):137938. PubMed ID: 37948803 [TBL] [Abstract][Full Text] [Related]
7. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Guevara-Avendaño E; Bejarano-Bolívar AA; Kiel-Martínez AL; Ramírez-Vázquez M; Méndez-Bravo A; von Wobeser EA; Sánchez-Rangel D; Guerrero-Analco JA; Eskalen A; Reverchon F Microbiol Res; 2019 Feb; 219():74-83. PubMed ID: 30642469 [TBL] [Abstract][Full Text] [Related]
8. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Jin P; Wang H; Tan Z; Xuan Z; Dahar GY; Li QX; Miao W; Liu W Pestic Biochem Physiol; 2020 Feb; 163():102-107. PubMed ID: 31973845 [TBL] [Abstract][Full Text] [Related]
9. Butyl succinate-mediated control of Bacillus velezensis ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides. Hwang SH; Maung CEH; Noh JS; Cho JY; Kim KY J Appl Microbiol; 2023 Nov; 134(11):. PubMed ID: 37903743 [TBL] [Abstract][Full Text] [Related]
10. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Rajaofera MJN; Wang Y; Dahar GY; Jin P; Fan L; Xu L; Liu W; Miao W Pestic Biochem Physiol; 2019 May; 156():170-176. PubMed ID: 31027577 [TBL] [Abstract][Full Text] [Related]
11. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. Ling L; Zhao Y; Tu Y; Yang C; Ma W; Feng S; Lu L; Zhang J J Basic Microbiol; 2021 Feb; 61(2):110-121. PubMed ID: 33368461 [TBL] [Abstract][Full Text] [Related]
12. In vitro growth of Emanuel RV; César Arturo PU; Lourdes Iveth MR; Homero RC; Mauricio Nahuam CA 3 Biotech; 2020 Aug; 10(8):329. PubMed ID: 32656062 [TBL] [Abstract][Full Text] [Related]
13. Biocontrol potential of endophytic bacterium Wu Y; Tan Y; Peng Q; Xiao Y; Xie J; Li Z; Ding H; Pan H; Wei L PeerJ; 2024; 12():e16761. PubMed ID: 38223761 [TBL] [Abstract][Full Text] [Related]
14. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. Tang L; Mo J; Guo T; Huang S; Li Q; Ning P; Hsiang T World J Microbiol Biotechnol; 2019 Dec; 36(1):4. PubMed ID: 31832786 [TBL] [Abstract][Full Text] [Related]
15. Antifungal Activity of Volatile Organic Compounds Produced by He CN; Ye WQ; Zhu YY; Zhou WW Molecules; 2020 Jul; 25(15):. PubMed ID: 32722108 [TBL] [Abstract][Full Text] [Related]
16. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Kim PI; Ryu J; Kim YH; Chi YT J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activity of volatile compounds produced by Staphylococcus sciuri strain MarR44 and its potential for the biocontrol of Colletotrichum nymphaeae, causal agent strawberry anthracnose. Alijani Z; Amini J; Ashengroph M; Bahramnejad B Int J Food Microbiol; 2019 Oct; 307():108276. PubMed ID: 31408741 [TBL] [Abstract][Full Text] [Related]
18. Inhibitory mechanism of 4-ethyl-1,2-dimethoxybenzene produced by Streptomyces albidoflavus strain ML27 against Colletotrichum gloeosporioides. Lai J; Liu B; Xiong G; Luo Q; Song S; Jiang J; Wei H; Wang J Pestic Biochem Physiol; 2024 Sep; 204():106086. PubMed ID: 39277399 [TBL] [Abstract][Full Text] [Related]
19. Characterization and evaluation of Heo Y; Lee Y; Balaraju K; Jeon Y Front Microbiol; 2023; 14():1322641. PubMed ID: 38260885 [TBL] [Abstract][Full Text] [Related]
20. Antifungal Effects of Volatile Organic Compounds Produced by Kong WL; Rui L; Ni H; Wu XQ Front Microbiol; 2020; 11():1114. PubMed ID: 32547526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]