These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33899499)

  • 1. Vascular Dysfunction after Modeled Traumatic Brain Injury Is Preserved with Administration of Umbilical Cord Derived Mesenchymal Stromal Cells and Is Associated with Modulation of the Angiogenic Response.
    Barretto TA; Park E; Telliyan T; Liu E; Gallagher D; Librach C; Baker A
    J Neurotrauma; 2021 Oct; 38(19):2747-2762. PubMed ID: 33899499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axon Degeneration Is Rescued with Human Umbilical Cord Perivascular Cells: A Potential Candidate for Neuroprotection After Traumatic Brain Injury.
    Barretto TA; Park K; Maghen L; Park E; Kenigsberg S; Gallagher D; Liu E; Gauthier-Fisher A; Librach C; Baker A
    Stem Cells Dev; 2020 Feb; 29(4):198-211. PubMed ID: 31701812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of pericyte-endothelium crosstalk leads to blood-brain barrier dysfunction following traumatic brain injury.
    Bhowmick S; D'Mello V; Caruso D; Wallerstein A; Abdul-Muneer PM
    Exp Neurol; 2019 Jul; 317():260-270. PubMed ID: 30926390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury.
    Vawda R; Badner A; Hong J; Mikhail M; Lakhani A; Dragas R; Xhima K; Barretto T; Librach CL; Fehlings MG
    Stem Cells Transl Med; 2019 Jul; 8(7):639-649. PubMed ID: 30912623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Umbilical Cord-Derived Mesenchymal Stem Cell Therapy Effectively Protected the Brain Architecture and Neurological Function in Rat After Acute Traumatic Brain Injury.
    Chen KH; Shao PL; Li YC; Chiang JY; Sung PH; Chien HW; Shih FY; Lee MS; Chen WF; Yip HK
    Cell Transplant; 2020; 29():963689720929313. PubMed ID: 33169616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course and mechanistic analysis of human umbilical cord perivascular cell mitigation of lipopolysaccharide-induced systemic and neurological inflammation.
    Shuster-Hyman H; Siddiqui F; Gallagher D; Gauthier-Fisher A; Librach CL
    Cytotherapy; 2023 Feb; 25(2):125-137. PubMed ID: 36473795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Conditioned Medium from Bone Marrow Cells on Human Umbilical Cord Perivascular Cells.
    Kajiyama S; Nagashima Y; Funatsu T; Suzuki T; Fukaya M; Matsushima Y; Nagano T; Davies JE; Gomi K
    Tissue Eng Part A; 2021 Mar; 27(5-6):382-389. PubMed ID: 32718226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury.
    Badner A; Vawda R; Laliberte A; Hong J; Mikhail M; Jose A; Dragas R; Fehlings M
    Stem Cells Transl Med; 2016 Aug; 5(8):991-1003. PubMed ID: 27245367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of parietal cytokine and chemokine gene profiles by mesenchymal stem cell as a basis for neurotrauma recovery.
    Lin CH; Lin W; Su YC; Cheng-Yo Hsuan Y; Chen YC; Chang CP; Chou W; Lin KC
    J Formos Med Assoc; 2019 Dec; 118(12):1661-1673. PubMed ID: 30709695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose withdrawal induces Endothelin 1 release with significant angiogenic effect from first trimester (FTM), but not term human umbilical cord perivascular cells (HUCPVC).
    Szaraz P; Mander P; Gasner N; Librach M; Iqbal F; Librach C
    Angiogenesis; 2020 May; 23(2):131-144. PubMed ID: 31576475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An In Vitro Co-Culture Model of Bone Marrow Mesenchymal Stromal Cells and Peripheral Blood Mononuclear Cells Promotes the Differentiation of Myeloid Angiogenic Cells and Pericyte-Like Cells.
    Uusitalo-Kylmälä L; Santo Mendes AC; Polari L; Joensuu K; Heino TJ
    Stem Cells Dev; 2021 Mar; 30(6):309-324. PubMed ID: 33499756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury.
    van Vliet EA; Ndode-Ekane XE; Lehto LJ; Gorter JA; Andrade P; Aronica E; Gröhn O; Pitkänen A
    Neurobiol Dis; 2020 Nov; 145():105080. PubMed ID: 32919030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiogenic potency evaluation of cell therapy candidates by a novel application of the in vitro aortic ring assay.
    Iqbal F; Szaraz P; Librach M; Gauthier-Fisher A; Librach CL
    Stem Cell Res Ther; 2017 Aug; 8(1):184. PubMed ID: 28807010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury.
    Main BS; Villapol S; Sloley SS; Barton DJ; Parsadanian M; Agbaegbu C; Stefos K; McCann MS; Washington PM; Rodriguez OC; Burns MP
    Mol Neurodegener; 2018 Apr; 13(1):17. PubMed ID: 29618365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury.
    Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J
    Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss.
    Mäe MA; He L; Nordling S; Vazquez-Liebanas E; Nahar K; Jung B; Li X; Tan BC; Chin Foo J; Cazenave-Gassiot A; Wenk MR; Zarb Y; Lavina B; Quaggin SE; Jeansson M; Gu C; Silver DL; Vanlandewijck M; Butcher EC; Keller A; Betsholtz C
    Circ Res; 2021 Feb; 128(4):e46-e62. PubMed ID: 33375813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RAGE mediates hippocampal pericyte responses and neurovascular unit lesions after TBI.
    Du M; Li J; Yu S; Chen X; She Y; Lu Y; Shu H
    Exp Neurol; 2024 Oct; 380():114912. PubMed ID: 39097075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
    Liu Y; Zhang H; Wang S; Guo Y; Fang X; Zheng B; Gao W; Yu H; Chen Z; Roman RJ; Fan F
    Am J Physiol Heart Circ Physiol; 2021 Feb; 320(2):H549-H562. PubMed ID: 33306445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiogenic potential of human mesenchymal stromal cell and circulating mononuclear cell cocultures is reflected in the expression profiles of proangiogenic factors leading to endothelial cell and pericyte differentiation.
    Joensuu K; Uusitalo-Kylmälä L; Hentunen TA; Heino TJ
    J Tissue Eng Regen Med; 2018 Mar; 12(3):775-783. PubMed ID: 28593699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute Traumatic Brain Injury-Induced Neuroinflammatory Response and Neurovascular Disorders in the Brain.
    Kempuraj D; Ahmed ME; Selvakumar GP; Thangavel R; Raikwar SP; Zaheer SA; Iyer SS; Govindarajan R; Nattanmai Chandrasekaran P; Burton C; James D; Zaheer A
    Neurotox Res; 2021 Apr; 39(2):359-368. PubMed ID: 32955722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.